
db2utils Documentation
Release 0.2

Dave Hughes

February 04, 2015

Contents

1 Table of Contents 3
1.1 Introduction . 3
1.2 Requirements . 3
1.3 Downloads . 4
1.4 Installation . 4
1.5 First Steps . 5
1.6 Modules Overview . 6
1.7 Reference . 7
1.8 Change Log . 127
1.9 License . 127

2 Indices and tables 129

i

ii

db2utils Documentation, Release 0.2

db2utils is a collection of utility routines for IBM DB2 for Linux/UNIX/Windows (DB2 for LUW) which I have
developed over several years as a DBA to make my duties a little easier.

Downloads are available from GitHub which also hosts the source code, and the bug tracker. Documentation is hosted
by ReadTheDocs, and includes requirements, installation instructions, and an extensive reference section. The project
is licensed under the MIT license.

Please feel free to contact me with questions, suggestions or patches!

Contents 1

http://www-01.ibm.com/software/data/db2/linux-unix-windows/
https://github.com/waveform80/db2utils/releases
https://github.com/
https://github.com/waveform80/db2utils
https://github.com/waveform80/db2utils/issues
http://db2utils.readthedocs.org/
http://readthedocs.org/
http://opensource.org/licenses/MIT
mailto:dave@waveform.org.uk

db2utils Documentation, Release 0.2

2 Contents

CHAPTER 1

Table of Contents

1.1 Introduction

db2utils is a collection of utility routines for IBM DB2 for Linux/UNIX/Windows (DB2 for LUW) which I have
developed over several years as a DBA to make my duties a little easier. The package has been tested on DB2 9.7,
10.1, and 10.5 under Linux (and previously with DB2 9.5 under Linux, although I cannot currently test with this
version).

The utilities cover a range of topics including:

• Manipulation of user authorizations including copy all authorizations from one user to another

• Numerous date/time manipulation functions including a table-function for generating arbitrary date ranges

• Management of temporal data including automatic construction of effective-expiry-style history tables, the trig-
gers to maintain them, and various views of historical data

• Perl-compatible regular expression functions including searching, substitution and splitting

• Automatic construction of exception tables (and analysis views) as used by the built-in LOAD utility and the
SET INTEGRITY command

• Utilities for easy reconstruction of invalidated views and triggers (rather redundant as of 9.7, but probably still
useful on 9.5)

• Utility functions which ease the construction of procedures which generate SQL (e.g. string and identifier
quoting, construction of comma-separated column lists)

All functions and procedures are reasonably well documented in these pages, in comments in the source files, and
with COMMENT ON statements within the database. Per-module and suite-wide roles are also defined to permit easy
management of which users have access to which routines.

A simple installation procedure is provided for Linux/UNIX users, but Windows support is on an “if you can get it
working” basis: I don’t have any DB2 for Windows installations to play with and I’ve no idea how one compiles
external C-based UDFs on Windows.

1.2 Requirements

Obviously you’ll want a relatively recent installation of DB2 for Linux/UNIX/Windows. Currently, the package has
been tested on the following versions and platforms:

• DB2 9.5 for Linux (64-bit)

• DB2 9.7 for Linux (64-bit)

3

http://www-01.ibm.com/software/data/db2/linux-unix-windows/

db2utils Documentation, Release 0.2

• DB2 10.1 for Linux (64-bit)

• DB2 10.5 for Linux (64-bit)

1.2.1 Linux

As db2utils includes C-based external routines, a C compiler is required (gcc is the only one I’ve tested thus far).
GNU make is used to ease the installation process, and GNU awk is used as part of the test script. The PCRE library
and headers are required by the pcre functions. All these pre-requisites can be installed quite easily using your distro’s
package manager. Instructions for specific distros are below:

Ubuntu $ sudo apt-get install build-essential gawk libpcre3 libpcre3-dev

Gentoo (with Portage) (you almost certainly already have all pre-requisites installed, but if not):

$ sudo emerge sys-apps/gawk sys-devel/make sys-devel/gcc dev-libs/libpcre

Gentoo (with Paludis) (you almost certainly already have all pre-requisites installed, but if not):

$ sudo cave resolve -x sys-apps/gawk sys-devel/make sys-devel/gcc
dev-libs/libpcre

1.2.2 Windows

What compiler is required for building C-based external routines? How does one install and configure it? How does
one execute Makefiles on Windows? Can Cygwin/MingW be used for any of this? If anyone wants to figure this all
out, be my guest...

1.3 Downloads

The releases of the library in reverse chronological order are listed below along with download links:

• Release 0.1 (2013-08-16)

1.3.1 Development

If you wish to develop db2utils itself, you are recommended to do so from a clone of the GitHub repository which can
be obtained like so:

$ git clone https://github.com/waveform80/db2utils.git

Alternatively, fork the repository on GitHub, develop on your copy and submit a pull request.

1.4 Installation

First, make sure you’ve installed the Requirements, then following the instructions in the section for your platform
below.

4 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/archive/release-0.1.tar.gz

db2utils Documentation, Release 0.2

1.4.1 Linux

Log on as a user which has SYSADM authority for the DB2 instance you wish to install under (commonly this is
db2inst1), and ensure the db2profile for the target DB2 instance has been sourced (this is the usually the case with the
db2inst1 user):

$ su - db2inst1
$ source ~db2inst1/sqllib/db2profile

Extract the archive you downloaded, and change to the directory it creates:

$ tar -xzf db2utils-release-0.1.tar.gz
$ cd db2utils-release-0.1

Edit the two variables DBNAME and SCHEMANAME at the top of the Makefile:

$ ${EDITOR} Makefile

These indicate the database into which to install everything and the schema under which to place all objects. Finally,
use the included Makefile to make the “install” target:

$ make install

This will compile the external pcre UDFs library, install it in the instance identified by the DB2INSTANCE environ-
ment variable (which is set by db2profile), then connect to the database identified by DBNAME and install everything
under the schema specified by SCHEMANAME.

If you wish to see the SQL that would be executed without actually executing it (if, for example, you wish to edit it
before hand) you can create it with the following target:

$ make install.sql

If you wish to uninstall everything from the database, simply make the “uninstall” target:

$ make uninstall

There is also a target which attempts to test the implementation of various functions and procedures by using the
functions in the assert.sql module. This can be run with the “test” target:

$ make test

The test suite is currently rather crude. Any error immediately stops the test suite to allow examination. If the test
suite runs to the end, this indicates success.

1.4.2 Windows

Anyone want to figure this out?

1.5 First Steps

The package installs a variety of functions and procedures under the UTILS schema by default. The functions are
divided into modules and each module defines at least two roles which can be used to grant access to the functions
of that module. The roles are always named UTILS_module_USER and UTILS_module_ADMIN. For example,
the auth.sql defines UTILS_AUTH_USER and UTILS_AUTH_ADMIN. The UTILS_AUTH_USER role has the
ability to execute all procedures and functions within the module. The UTILS_AUTH_ADMIN role also has these
execute privileges and in addition has the ability to grant the UTILS_AUTH_USER role to other users and roles.

1.5. First Steps 5

https://github.com/waveform80/db2utils/blob/master/Makefile
https://github.com/waveform80/db2utils/blob/master/assert.sql
https://github.com/waveform80/db2utils/blob/master/auth.sql

db2utils Documentation, Release 0.2

In addition to the per-module roles, there are also a couple of other roles: UTILS_USER and UTILS_ADMIN.
UTILS_USER holds all the per-module user roles, while UTILS_ADMIN holds all the per-module administrative
roles so if you wish to grant access to the entire suite, simply grant one of these two roles. Naturally, UTILS_ADMIN
also holds the ability to grant UTILS_USER, and in addition has CREATEIN, DROPIN, and ALTERIN privileges
on the target schema.

Hence, after installing the package your first step will likely be to assign some roles to other roles. For example, let’s
assume you have a role called DEVELOPERS who should have access to the entire suite of functions in db2utils. Let’s
also assume there’s a role for ordinary users called QUERY_USERS who should only have access to the enhanced
date-time functions in the date_time.sql module. Finally, there’s a role for administrative users called ADMINS who
should have administrative control over the package. In this case, after installation you would do the following:

$ db2 GRANT ROLE UTILS_ADMIN TO ROLE ADMINS WITH ADMIN OPTION
$ db2 GRANT ROLE UTILS_USER TO ROLE DEVELOPERS
$ db2 GRANT ROLE UTILS_DATE_TIME_USER TO ROLE QUERY_USERS

In order to provide easier access to the functions and procedures in the package you will likely want to alter your
function search path:

$ db2 SET PATH SYSTEM PATH, USER, UTILS

If you use the utilities regularly you may wish to construct a small script, alias, or function for connecting to your
database and setting the function search path automatically. For example, in my .bashrc I have:

sample() {
Ensure the correct instance is active
db2 TERMINATE
source ~db2inst1/sqllib/db2profile
Connect to the database and set up the environment
db2 CONNECT TO SAMPLE
db2 SET PATH SYSTEM PATH, USER, UTILS
db2 SET SCHEMA MAIN

}

1.6 Modules Overview

The routines are divided into modules roughly by topic:

assert.sql Includes a set of procedures and functions for performing assertion tests against the framework.

auth.sql Includes a set of procedures for managing authorizations, including the ability to copy, remove, and move
all authorizations for a given ID, and save and restore authorizations on relations.

corrections.sql In the databases I work with there is frequently a need to correct data sourced from other databases,
typically names of entities which weren’t “neat enough” for reporting purposes. We accomplished this by
having an “original name” column, a “corrected name” column, and finally the name column itself would be a
generated column coalescing the two together. Only those names that required correction would have a value
in the “corrected name” column, and a trigger on the table would ensure that corrections would be wiped in
the event that the “original name” changed (on the assumption that the correction would need changing). This
module contains procedures for creating the trigger.

date_time.sql Contains numerous functions for handling DATE, TIME and TIMESTAMP values including calculating
the start and end dates of years, quarters, and months, calculating the next or previous of a particular day of the
week (Monday, Tuesday, etc.), formatting timestamps with strftime() style templates, and a table function for
generating a range of dates.

6 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql
https://github.com/waveform80/db2utils/blob/master/assert.sql
https://github.com/waveform80/db2utils/blob/master/auth.sql
https://github.com/waveform80/db2utils/blob/master/corrections.sql
https://github.com/waveform80/db2utils/blob/master/date_time.sql

db2utils Documentation, Release 0.2

drop_schema.sql Contains a procedure for dropping all objects in a schema, and the schema itself. This is redundant
as of DB2 9.5 which incldues ADMIN_DROP_SCHEMA, but the syntax is a bit easier for this one as it doesn’t
rely on a table to report errors (if something goes wrong it just fails and throws an SQL error).

evolve.sql Contains procedures which make schema evolution (changing views and such like) a bit easier. This is
redundant as of DB2 9.7 which includes much better schema evolution capabilities (deferred revalidation), but
may still be useful for people on earlier versions. The routines include the ability to save and restore view
definitions, including authorizations, and routines for easily recreating invalid views and triggers from their
definitions in the system catalog.

exceptions.sql Contains procedures for creating exception tables and views. Exception tables have the same structure
as a base table but with two extra columns for reporting errors that occur during a LOAD or SET INTEGRITY
command. Exception views translate the (rather cryptic) extra columns in exception tables into human readable
information.

export_load.sql Contains functions for generating EXPORT and LOAD commands for tables or schemas of tables.
These can be used to easily generate CLP scripts which mimic the function of db2move, but with all the
filtering capabilities of SQL (i.e. you could limit the scope with more fidelity than just specifying a schema),
and with functionality to cope with IDENTITY and GENERATED columns properly (which db2move has
problems with).

history.sql Contains procedures for creating “history” tables, triggers, and views. History tables track the changes to
a base table over time. Triggers on the base table are used to populate the history table. Views on the history
table can be created to provide different perspectives on the history data (snapshots over time, explicit lists of
what changes occured, etc).

log.sql Contains a table and a procedure for logging administrative alerts and information. This module isn’t complete
yet; plenty of functionality I’d like to implement when I get the time...

merge.sql Defines a set of procedures for automatically generating INSERT, DELETE, and MERGE statements with
the intention of bulk-transferring data between similarly structured tables.

pcre.sql Defines a set of functions providing PCRE (Perl Compatible Regular Expression) search, split and substitu-
tion functionality. The functions are implemented in a C library the source for which is in the pcre/ sub-directory.

sql.sql Contains a couple of simple functions for escaping strings and identifiers in SQL. Used by numerous of the
modules for generating SQL dynamically.

toggle_triggers.sql Contains procedures for easily disabling and enabling triggers, including specific triggers or all
triggers on a given table.

unicode.sql Defines functions for cleaning up Unicode strings, in particular those using the common UTF-8 encoding
scheme. The functions are implemented in a C library the source for which is in the unicode/ sub-directory.

1.7 Reference

Each procedure and function is documented below (or will be once I get the time!). Click on a routine name to view
the documentation:

1.7.1 Functions

ASSERT_EQUALS scalar function

Signals ASSERT_FAILED_STATE if A does not equal B.

1.7. Reference 7

https://github.com/waveform80/db2utils/blob/master/drop_schema.sql
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.sql.rtn.doc/doc/r0022036.html
https://github.com/waveform80/db2utils/blob/master/evolve.sql
https://github.com/waveform80/db2utils/blob/master/exceptions.sql
https://github.com/waveform80/db2utils/blob/master/export_load.sql
https://github.com/waveform80/db2utils/blob/master/history.sql
https://github.com/waveform80/db2utils/blob/master/log.sql
https://github.com/waveform80/db2utils/blob/master/merge.sql
https://github.com/waveform80/db2utils/blob/master/pcre.sql
http://www.pcre.org
https://github.com/waveform80/db2utils/blob/master/pcre/
https://github.com/waveform80/db2utils/blob/master/sql.sql
https://github.com/waveform80/db2utils/blob/master/toggle_triggers.sql
https://github.com/waveform80/db2utils/blob/master/unicode.sql
https://github.com/waveform80/db2utils/blob/master/unicode/

db2utils Documentation, Release 0.2

Prototypes

ASSERT_EQUALS(A INTEGER, B INTEGER)
ASSERT_EQUALS(A DOUBLE, B DOUBLE)
ASSERT_EQUALS(A TIMESTAMP, B TIMESTAMP)
ASSERT_EQUALS(A TIME, B TIME)
ASSERT_EQUALS(A VARCHAR(4000), B VARCHAR(4000))

RETURNS INTEGER

Description

Raises the ASSERT_FAILED_STATE state if A does not equal B. The function is overloaded for most common types
and generally should not need CASTs for usage. The return value in the case that the values are equal is arbitrary.

Parameters

A The first value to compare

B The value to compare to A

Examples

Test that TIMESTAMP is constant within an expression:

VALUES ASSERT_EQUALS(CURRENT TIMESTAMP, CURRENT TIMESTAMP);

1

0

Test an obvious failure:

VALUES ASSERT_EQUALS(1, 2);

1

SQL0438N Application raised error or warning with diagnostic text: "1 does
not equal 2". SQLSTATE=90001

See Also

• Source code

• ASSERT_NOT_EQUALS scalar function

• ASSERT_IS_NULL scalar function

• ASSERT_IS_NOT_NULL scalar function

• ASSERT_FAILED_STATE

8 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/assert.sql#L502

db2utils Documentation, Release 0.2

ASSERT_IS_NOT_NULL scalar function

Signals ASSERT_FAILED_STATE if A is NULL.

Prototypes

ASSERT_IS_NOT_NULL(A INTEGER)
ASSERT_IS_NOT_NULL(A DOUBLE)
ASSERT_IS_NOT_NULL(A TIMESTAMP)
ASSERT_IS_NOT_NULL(A TIME)
ASSERT_IS_NOT_NULL(A VARCHAR(4000))

RETURNS INTEGER

Description

Raises the ASSERT_FAILED_STATE state if A is NULL. The function is overloaded for most common types and
generally should not need CASTs for usage. The return value in the case that the value is not NULL is arbitrary.

Parameters

A The value to check for NULL.

Examples

Test an obvious tautology:

VALUES ASSERT_IS_NOT_NULL(1);

1

0

Test that the DATE scalar function function returns NULL on NULL input:

VALUES ASSERT_IS_NOT_NULL(DATE(2000, 1, NULL));

1

SQL0438N Application raised error or warning with diagnostic text: "Value
is NULL". SQLSTATE=90001

See Also

• Source code

• ASSERT_IS_NULL scalar function

• ASSERT_NOT_EQUALS scalar function

• ASSERT_EQUALS scalar function

• ASSERT_FAILED_STATE

1.7. Reference 9

https://github.com/waveform80/db2utils/blob/master/assert.sql#L409

db2utils Documentation, Release 0.2

ASSERT_IS_NULL scalar function

Signals ASSERT_FAILED_STATE if A is a non-NULL value.

Prototypes

ASSERT_IS_NULL(A INTEGER)
ASSERT_IS_NULL(A DOUBLE)
ASSERT_IS_NULL(A TIMESTAMP)
ASSERT_IS_NULL(A TIME)
ASSERT_IS_NULL(A VARCHAR(4000))

RETURNS INTEGER

Description

Raises the ASSERT_FAILED_STATE state if A is not NULL. The function is overloaded for most common types and
generally should not need CASTs for usage. The return value in the case that the value is NULL is arbitrary.

Parameters

A The value to check for NULL.

Examples

Test an obvious failure:

VALUES ASSERT_IS_NULL(1);

1

SQL0438N Application raised error or warning with diagnostic text: "1 is
non-NULL". SQLSTATE=90001

Test that the DATE scalar function function returns NULL on NULL input:

VALUES ASSERT_IS_NULL(DATE(2000, 1, NULL));

1

0

See Also

• Source code

• ASSERT_IS_NOT_NULL scalar function

• ASSERT_NOT_EQUALS scalar function

• ASSERT_EQUALS scalar function

• ASSERT_FAILED_STATE

10 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/assert.sql#L314

db2utils Documentation, Release 0.2

ASSERT_NOT_EQUALS scalar function

Signals ASSERT_FAILED_STATE if A equals B.

Prototypes

ASSERT_NOT_EQUALS(A INTEGER, B INTEGER)
ASSERT_NOT_EQUALS(A DOUBLE, B DOUBLE)
ASSERT_NOT_EQUALS(A TIMESTAMP, B TIMESTAMP)
ASSERT_NOT_EQUALS(A TIME, B TIME)
ASSERT_NOT_EQUALS(A VARCHAR(4000), B VARCHAR(4000))

RETURNS INTEGER

Description

Raises the ASSERT_FAILED_STATE state if A equals B. The function is overloaded for most common types and
generally should not need CASTs for usage. The return value in the case that the values aren’t equal is arbitrary.

Parameters

A The first value to compare

B The value to compare to A

Examples

Test that the LEFT function works:

VALUES ASSERT_NOT_EQUALS(’AAA’, LEFT(’AAA’, 1));

1

0

Test an obvious failure:

VALUES ASSERT_NOT_EQUALS(1, 1);

1

SQL0438N Application raised error or warning with diagnostic text: "
Values are both 1". SQLSTATE=90001

See Also

• Source code

• ASSERT_EQUALS scalar function

• ASSERT_IS_NULL scalar function

• ASSERT_IS_NOT_NULL scalar function

1.7. Reference 11

https://github.com/waveform80/db2utils/blob/master/assert.sql#L601

db2utils Documentation, Release 0.2

• ASSERT_FAILED_STATE

AUTH_DIFF table function

Utility table function which returns the difference between the authorities held by two names.

Prototypes

AUTH_DIFF(SOURCE VARCHAR(128), SOURCE_TYPE VARCHAR(1), DEST VARCHAR(128), DEST_TYPE VARCHAR(1), INCLUDE_COLUMNS VARCHAR(1), INCLUDE_PERSONAL VARCHAR(1))
AUTH_DIFF(SOURCE VARCHAR(128), DEST VARCHAR(128), INCLUDE_COLUMNS VARCHAR(1), INCLUDE_PERSONAL VARCHAR(1))
AUTH_DIFF(SOURCE VARCHAR(128), DEST VARCHAR(128), INCLUDE_COLUMNS VARCHAR(1))

RETURNS TABLE(
OBJECT_TYPE VARCHAR(18),
OBJECT_ID VARCHAR(262),
AUTH VARCHAR(140),
SUFFIX VARCHAR(20),
LEVEL SMALLINT

)

Description

This utility function determines the difference in authorizations held by two different entities (as determined by
AUTHS_HELD table function). Essentially it takes the authorizations of the SOURCE entity and “subtracts” the
authorizations of the DEST entity, the result being the authorizations that need to be granted to DEST to give it the
same level of access as SOURCE. This is used in the definition of the COPY_AUTH procedure routine.

Parameters

SOURCE The name to check for existing authorizations.

SOURCE_TYPE The type of the SOURCE parameter. Specify ’U’, ’G’, or ’R’ for User, Group or Role respec-
tively. If this parameter is omitted, the type will be determined by the AUTH_TYPE scalar function function.

DEST The intended destination for the authorizations held by SOURCE.

DEST_TYPE The type of the DEST parameter. Takes the same values as SOURCE_TYPE. If omitted, the type
will be determined by the AUTH_TYPE scalar function function.

INCLUDE_COLUMNS If this parameter is ’Y’, column level authorizations will be included.

INCLUDE_PERSONAL If this parameter is ’Y’, and SOURCE identifies a user, then authorizations for the source
user’s personal schema will be included in the result. This parameter defaults to ’N’ when omitted.

Returns

See the AUTHS_HELD table function documentation for a description of the columns of the returned table (this routine
is essentially a “subtraction” of two AUTHS_HELD calls hence the output structure is identical).

12 Chapter 1. Table of Contents

db2utils Documentation, Release 0.2

Examples

Show the authorizations directly granted to the DB2INST1 user which the currently logged on user does not possess.

SELECT * FROM TABLE(AUTH_DIFF(’DB2INST1’, USER, ’N’));

OBJECT_TYPE OBJECT_ID AUTH SUFFIX LEVEL
----------- ------------------------- ----------- -------------------- ------
PACKAGE NULLID.POLYH03 CONTROL 0
INDEX SYSTOOLS.ATM_UNIQ CONTROL 0
INDEX SYSTOOLS.HI_OBJ_UNIQ CONTROL 0
TABLE SYSTOOLS.HMON_ATM_INFO CONTROL 0
TABLE SYSTOOLS.HMON_COLLECTION CONTROL 0
TABLE SYSTOOLS.POLICY CONTROL 0
INDEX SYSTOOLS.POLICY_UNQ CONTROL 0
TABLE SYSTOOLS.HMON_ATM_INFO ALTER WITH GRANT OPTION 1
TABLE SYSTOOLS.HMON_COLLECTION ALTER WITH GRANT OPTION 1
TABLE SYSTOOLS.POLICY ALTER WITH GRANT OPTION 1
PACKAGE NULLID.POLYH03 BIND WITH GRANT OPTION 1
TABLE SYSTOOLS.HMON_ATM_INFO DELETE WITH GRANT OPTION 1
TABLE SYSTOOLS.HMON_COLLECTION DELETE WITH GRANT OPTION 1
TABLE SYSTOOLS.POLICY DELETE WITH GRANT OPTION 1
PACKAGE NULLID.POLYH03 EXECUTE WITH GRANT OPTION 1
TABLE SYSTOOLS.HMON_ATM_INFO INDEX WITH GRANT OPTION 1
TABLE SYSTOOLS.HMON_COLLECTION INDEX WITH GRANT OPTION 1
TABLE SYSTOOLS.POLICY INDEX WITH GRANT OPTION 1
TABLE SYSTOOLS.HMON_ATM_INFO INSERT WITH GRANT OPTION 1
TABLE SYSTOOLS.HMON_COLLECTION INSERT WITH GRANT OPTION 1
TABLE SYSTOOLS.POLICY INSERT WITH GRANT OPTION 1
TABLE SYSTOOLS.HMON_ATM_INFO REFERENCES WITH GRANT OPTION 1
TABLE SYSTOOLS.HMON_COLLECTION REFERENCES WITH GRANT OPTION 1
TABLE SYSTOOLS.POLICY REFERENCES WITH GRANT OPTION 1
TABLE SYSTOOLS.HMON_ATM_INFO SELECT WITH GRANT OPTION 1
TABLE SYSTOOLS.HMON_COLLECTION SELECT WITH GRANT OPTION 1
TABLE SYSTOOLS.POLICY SELECT WITH GRANT OPTION 1
TABLE SYSTOOLS.HMON_ATM_INFO UPDATE WITH GRANT OPTION 1
TABLE SYSTOOLS.HMON_COLLECTION UPDATE WITH GRANT OPTION 1
TABLE SYSTOOLS.POLICY UPDATE WITH GRANT OPTION 1
TABLESPACE SYSTOOLSPACE USE WITH GRANT OPTION 1
TABLESPACE SYSTOOLSTMPSPACE USE WITH GRANT OPTION 1

See Also

• Source code

• AUTH_TYPE scalar function

• AUTHS_HELD table function

• COPY_AUTH procedure

• MOVE_AUTH procedure

• REMOVE_AUTH procedure

AUTH_TYPE scalar function

Utility routine used by other routines to determine the type of an authorization name when it isn’t explicitly given.

1.7. Reference 13

https://github.com/waveform80/db2utils/blob/master/auth.sql#L502

db2utils Documentation, Release 0.2

Prototypes

AUTH_TYPE(AUTH_NAME VARCHAR(128))
RETURNS VARCHAR(1)

Description

This is a utility function used by the COPY_AUTH procedure procedure, and other associated procedures. Given an
authorization name, this scalar function returns ’U’, ’G’, or ’R’ to indicate that AUTH_NAME is a user, group, or
role respectively (based on the content of the system catalog tables). If the name is undefined, ’U’ is returned, unless
the name is PUBLIC in which case ’G’ is returned (for consistency with the catalog tables). If the name represents
multiple authorization types, SQLSTATE 21000 is raised.

Parameters

AUTH_NAME The authorization name to test for type.

Examples

Show the type of the PUBLIC authorization name.

VALUES AUTH_TYPE(’PUBLIC’);

1
-
G

Show the type of the authorization name of the currently logged on user.

VALUES AUTH_TYPE(CURRENT USER);

1
-
U

See Also

• Source code

• AUTHS_HELD table function

• AUTH_DIFF table function

• COPY_AUTH procedure

• MOVE_AUTH procedure

• REMOVE_AUTH procedure

AUTHS_HELD table function

Utility table function which returns all the authorizations held by a specific name.

14 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/auth.sql#L64

db2utils Documentation, Release 0.2

Prototypes

AUTHS_HELD(AUTH_NAME VARCHAR(128), AUTH_TYPE VARCHAR(1), INCLUDE_COLUMNS VARCHAR(1), INCLUDE_PERSONAL VARCHAR(1))
AUTHS_HELD(AUTH_NAME VARCHAR(128), INCLUDE_COLUMNS VARCHAR(1), INCLUDE_PERSONAL VARCHAR(1))
AUTHS_HELD(AUTH_NAME VARCHAR(128), INCLUDE_COLUMNS VARCHAR(1))

RETURNS TABLE(
OBJECT_TYPE VARCHAR(18),
OBJECT_ID VARCHAR(262),
AUTH VARCHAR(140),
SUFFIX VARCHAR(20),
LEVEL SMALLINT

)

Description

This is a utility function used by COPY_AUTH procedure, and other associated procedures, below. Given an autho-
rization name and type, and a couple of flags, this table function returns the details of all the authorizations held by that
name. The information returned is sufficient for comparison of authorizations and generation of GRANT/REVOKE
statements.

Parameters

AUTH_NAME The authorization name to query authorizations for.

AUTH_TYPE The type of the authorization name. Use ’U’ for users, ’G’ for groups, or ’R’ for roles. If this
parameter is omitted the type will be determined by calling the AUTH_TYPE scalar function function.

INCLUDE_COLUMNS If this is ’Y’ then include column-level authorizations for relations (tables, views, etc).
This is useful when generating REVOKE statements from the result (as column level authorizations cannot be
revoked directly in DB2).

INCLUDE_PERSONAL This parameter controls whether, in the case where AUTH_NAME refers to a user (as
opposed to a group or role), authorizations associated with the user’s personal schema are included in the result.
If set to ’Y’, personal schema authorizations are included. Defaults to ’N’ if omitted.

Returns

The function returns one row per authorization found in the system catalogs for the specified authorization name. Each
row contains the following columns:

OBJECT_TYPE This column typically contains a string indicating the type of object identified by the OBJECT_ID
column. However, given that this routine’s primary purpose is to aid in the generation of GRANT and REVOKE
statements, and given the inconsistencies in the numerous GRANT and REVOKE syntaxes employed by DB2,
this column is blank for certain object types (roles and security labels), and misleading for others (e.g. ’TABLE’
is returned for all relation types including views).

OBJECT_ID The identifier of the object the authorization was granted upon. This will be the schema-qualified name
for those objects that reside in a schema, and will be properly quoted (if required) for inclusion in generated
SQL.

AUTH The name of the authority granted upon the OBJECT_ID. For example, if OBJECT_TYPE is ’DATABASE’
this might be ’BINDADD’ or ’IMPLICIT_SCHEMA’. Alternatively, if OBJECT_TYPE is ’TABLE’ this
could be ’SELECT’ or ’ALTER’. As the function’s purpose is to aid in generating GRANT and REVOKE

1.7. Reference 15

db2utils Documentation, Release 0.2

statements, the name of the authority is always modelled after what would be used in the syntax of these state-
ments.

SUFFIX Several authorizations can be granted with additional permissions. For example in the case of tables, SE-
LECT authority can be granted with or without the GRANT OPTION (the ability for the grantee to pass on the
authority to others), while roles can be granted with or without the ADMIN OPTION (the ability for the grantee
to grant the role to others). If such a suffix is associated with the authority, this column will contain the syntax
required to grant that option.

LEVEL This is a numeric indicator of the “level” of a grant. As discussed in the description of the SUFFIX column
above, authorities can sometimes be granted with additional permissions. In such cases this column is a numeric
indication of the presence of additional permissions (for example, a simple SELECT grant would be represented
by 0, with SELECT WITH GRANT OPTION would be 1). This is used by COPY_AUTH procedure when com-
paring two sets of authorities to determine whether a grant needs “upgrading” (say from SELECT to SELECT
WITH GRANT OPTION).

Examples

Show the authorizations held by the PUBLIC group, limiting the results to 10 authorizations per object type (otherwise
the results are huge!).

WITH T AS (
SELECT
ROW_NUMBER() OVER (

PARTITION BY OBJECT_TYPE
ORDER BY OBJECT_ID

) AS ROWNUM,
T.*

FROM
TABLE (AUTHS_HELD(’PUBLIC’, ’N’)) AS T

)
SELECT

T.OBJECT_TYPE,
T.OBJECT_ID,
T.AUTH,
T.SUFFIX,
T.LEVEL

FROM
T

WHERE
T.ROWNUM <= 10

OBJECT_TYPE OBJECT_ID AUTH SUFFIX LEVEL
------------------ -- -------------------- -------------------- ------
DATABASE BINDADD 0
DATABASE CONNECT 0
DATABASE CREATETAB 0
DATABASE IMPLICIT_SCHEMA 0
PACKAGE NULLID.AOTMH00 BIND 0
PACKAGE NULLID.AOTMH00 EXECUTE 0
PACKAGE NULLID.ATSH04 BIND 0
PACKAGE NULLID.ATSH04 EXECUTE 0
PACKAGE NULLID.DB2XDBMI BIND 0
PACKAGE NULLID.DB2XDBMI EXECUTE 0
PACKAGE NULLID.PRINTSG BIND 0
PACKAGE NULLID.PRINTSG EXECUTE 0
PACKAGE NULLID.REVALH03 BIND 0

16 Chapter 1. Table of Contents

db2utils Documentation, Release 0.2

PACKAGE NULLID.REVALH03 EXECUTE 0
PROCEDURE SYSIBM.* EXECUTE 0
SCHEMA DAVE CREATEIN 0
SCHEMA NULLID CREATEIN 0
SCHEMA SQLJ CREATEIN 0
SCHEMA SYSPUBLIC CREATEIN 0
SCHEMA SYSPUBLIC DROPIN 0
SCHEMA SYSTOOLS CREATEIN 0
SCHEMA UTILS CREATEIN 0
SPECIFIC FUNCTION SYSPROC.ADMIN_GET_CONTACTGROUPS EXECUTE WITH GRANT OPTION 1
SPECIFIC FUNCTION SYSPROC.ADMIN_GET_CONTACTS EXECUTE WITH GRANT OPTION 1
SPECIFIC FUNCTION SYSPROC.ADMIN_GET_DBP_MEM_USAGE EXECUTE WITH GRANT OPTION 1
SPECIFIC FUNCTION SYSPROC.ADMIN_GET_DBP_MEM_USAGE_AP EXECUTE WITH GRANT OPTION 1
SPECIFIC FUNCTION SYSPROC.ADMIN_GET_INDEX_COMPRESS_INFO EXECUTE WITH GRANT OPTION 1
SPECIFIC FUNCTION SYSPROC.ADMIN_GET_INDEX_INFO EXECUTE WITH GRANT OPTION 1
SPECIFIC FUNCTION SYSPROC.ADMIN_GET_MSGS EXECUTE WITH GRANT OPTION 1
SPECIFIC FUNCTION SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO EXECUTE WITH GRANT OPTION 1
SPECIFIC FUNCTION SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO_V97 EXECUTE WITH GRANT OPTION 1
SPECIFIC FUNCTION SYSPROC.ADMIN_GET_TAB_INFO EXECUTE WITH GRANT OPTION 1
SPECIFIC PROCEDURE SQLJ.DB2_INSTALL_JAR EXECUTE WITH GRANT OPTION 1
SPECIFIC PROCEDURE SQLJ.DB2_INSTALL_JAR2 EXECUTE WITH GRANT OPTION 1
SPECIFIC PROCEDURE SQLJ.DB2_REPLACE_JAR EXECUTE WITH GRANT OPTION 1
SPECIFIC PROCEDURE SQLJ.DB2_UPDATEJARINFO EXECUTE WITH GRANT OPTION 1
SPECIFIC PROCEDURE SQLJ.RECOVERJAR EXECUTE WITH GRANT OPTION 1
SPECIFIC PROCEDURE SQLJ.REFRESH_CLASSES EXECUTE WITH GRANT OPTION 1
SPECIFIC PROCEDURE SQLJ.REMOVE_JAR EXECUTE WITH GRANT OPTION 1
SPECIFIC PROCEDURE SQLJ.REMOVE_JAR2 EXECUTE WITH GRANT OPTION 1
SPECIFIC PROCEDURE SYSFUN.GET_SAR EXECUTE WITH GRANT OPTION 1
SPECIFIC PROCEDURE SYSFUN.GET_SAR4PARM EXECUTE WITH GRANT OPTION 1
TABLE SYSCAT.ATTRIBUTES SELECT 0
TABLE SYSCAT.AUDITPOLICIES SELECT 0
TABLE SYSCAT.AUDITUSE SELECT 0
TABLE SYSCAT.BUFFERPOOLDBPARTITIONS SELECT 0
TABLE SYSCAT.BUFFERPOOLNODES SELECT 0
TABLE SYSCAT.BUFFERPOOLS SELECT 0
TABLE SYSCAT.CASTFUNCTIONS SELECT 0
TABLE SYSCAT.CHECKS SELECT 0
TABLE SYSCAT.COLAUTH SELECT 0
TABLE SYSCAT.COLCHECKS SELECT 0
TABLESPACE SYSTOOLSTMPSPACE USE 0
TABLESPACE USERSPACE1 USE 0
WORKLOAD SYSDEFAULTUSERWORKLOAD USAGE 0

See Also

• Source code

• AUTH_TYPE scalar function

• AUTH_DIFF table function

• COPY_AUTH procedure

• MOVE_AUTH procedure

• REMOVE_AUTH procedure

1.7. Reference 17

https://github.com/waveform80/db2utils/blob/master/auth.sql#L108

db2utils Documentation, Release 0.2

DATE scalar function

Returns a DATE constructed from the specified year, month and day (or day of year).

Prototypes

DATE(AYEAR INTEGER, AMONTH INTEGER, ADAY INTEGER)
DATE(AYEAR INTEGER, ADOY INTEGER)

RETURNS DATE

Description

Returns the DATE value with the components specified by AYEAR, AMONTH and ADAY, or alternatively AYEAR
and ADOY the latter of which is the day of year to construct a DATE for.

Parameters

AYEAR Specifies the year component of the resulting date.

AMONTH If provided, specifies the month component of the resulting date.

ADAY If provided, specifies the day (of month) component of the resulting date.

ADOY If provided, specifies the day of year from which the month and day components of the resulting date will be
calculated (the first day of a year is numbered 1).

Examples

Construct a date for first day in February, 2010:

VALUES DATE(2010, 2, 1);

1

2010-02-01

Construct a date for the 180th day of 2009:

VALUES DATE(2009, 180);

1

2009-06-29

See Also

• Source code

• TIME scalar function

• DATE (built-in function)

18 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L239
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000784.html

db2utils Documentation, Release 0.2

DATE_RANGE table function

Returns a table of DATEs from START to FINISH (inclusive), incrementing by STEP with each row (where STEP
is an 8 digit duration formatted as YYYYMMDD, which defaults to 1 day).

Prototypes

DATE_RANGE(START DATE, FINISH DATE, STEP DECIMAL(8, 0))
DATE_RANGE(START DATE, FINISH TIMESTAMP, STEP DECIMAL(8, 0))
DATE_RANGE(START TIMESTAMP, FINISH DATE, STEP DECIMAL(8, 0))
DATE_RANGE(START TIMESTAMP, FINISH TIMESTAMP, STEP DECIMAL(8, 0))
DATE_RANGE(START DATE, FINISH VARCHAR(26), STEP DECIMAL(8, 0))
DATE_RANGE(START VARCHAR(26), FINISH DATE, STEP DECIMAL(8, 0))
DATE_RANGE(START VARCHAR(26), FINISH VARCHAR(26), STEP DECIMAL(8, 0))
DATE_RANGE(START TIMESTAMP, FINISH VARCHAR(26), STEP DECIMAL(8, 0))
DATE_RANGE(START VARCHAR(26), FINISH TIMESTAMP, STEP DECIMAL(8, 0))
DATE_RANGE(START DATE, FINISH DATE)
DATE_RANGE(START DATE, FINISH TIMESTAMP)
DATE_RANGE(START TIMESTAMP, FINISH DATE)
DATE_RANGE(START TIMESTAMP, FINSIH TIMESTAMP)
DATE_RANGE(START DATE, FINISH VARCHAR(26))
DATE_RANGE(START VARCHAR(26), FINISH DATE)
DATE_RANGE(START VARCHAR(26), FINISH VARCHAR(26))
DATE_RANGE(START TIMESTAMP, FINISH VARCHAR(26))
DATE_RANGE(START VARCHAR(26), FINISH TIMESTAMP)

RETURNS TABLE(
D DATE

)

Description

DATE_RANGE generates a range of dates from START to FINISH inclusive, advancing in increments given by the
date duration STEP. Date durations are DECIMAL(8,0) values structured as YYYYMMDD (in DB2 they are typically
derived as the result of subtracting two DATE values). Hence, the following call would generate all dates from the 1st
of January 2006 to the 31st of January 2006.

DATE_RANGE(’2006-01-01’, ’2006-01-31’, 1)

Alternatively, the following call can be used to generate the 1st day of each month in the year 2006:

DATE_RANGE(’2006-01-01’, ’2006-12-01’, 100)

Note that 100 does not mean increment by 100 days each time, but by 1 month each time because the digit 1 falls in
the MM part of YYYYMMDD. If STEP is omitted it defaults to 1 day.

Parameters

START The date (specified as a DATE, TIMESTAMP, or VARCHAR(26)) from which to start generating dates.
START will always be part of the resulting table.

FINISH The date (specified as a DATE, TIMESTAMP, or VARCHAR(26)) on which to stop generating dates. FIN-
ISH may be part of the resulting table if iteration stops on FINISH. However, if the specified STEP causes
iteration to overshoot FINISH, it will not be included.

1.7. Reference 19

db2utils Documentation, Release 0.2

STEP If provided, the duration by which to increment each row of the output. Specified as a date duration; a DECI-
MAL(8,0) value formatted as YYYYMMDD (numebr of years, number of months, number of days).

Returns

D The function returns a table with a single column simply named D which contains the dates generated.

Examples

Generate all days in the first month of 2010:

SELECT D
FROM TABLE(

DATE_RANGE(MONTHSTART(2010, 1), MONTHEND(2010, 1))
);

D

2010-01-01
2010-01-02
2010-01-03
2010-01-04
2010-01-05
2010-01-06
2010-01-07
2010-01-08
2010-01-09
2010-01-10
2010-01-11
2010-01-12
2010-01-13
2010-01-14
2010-01-15
2010-01-16
2010-01-17
2010-01-18
2010-01-19
2010-01-20
2010-01-21
2010-01-22
2010-01-23
2010-01-24
2010-01-25
2010-01-26
2010-01-27
2010-01-28
2010-01-29
2010-01-30
2010-01-31

Generate the first day of each month in 2010:

SELECT D
FROM TABLE(

DATE_RANGE(YEARSTART(2010), YEAREND(2010), 100)
);

20 Chapter 1. Table of Contents

db2utils Documentation, Release 0.2

D

2010-01-01
2010-02-01
2010-03-01
2010-04-01
2010-05-01
2010-06-01
2010-07-01
2010-08-01
2010-09-01
2010-10-01
2010-11-01
2010-12-01

Generate the last day of each month in 2010:

SELECT MONTHEND(D) AS D
FROM TABLE(

DATE_RANGE(YEARSTART(2010), YEAREND(2010), 100)
);

D

2010-01-31
2010-02-28
2010-03-31
2010-04-30
2010-05-31
2010-06-30
2010-07-31
2010-08-31
2010-09-30
2010-10-31
2010-11-30
2010-12-31

Calculate the number of days in each quarter of 2010 (this is a crude and inefficient method, but it serves to demonstrate
the ability to aggregate result sets over date ranges):

SELECT QUARTER(D) AS Q, COUNT(*) AS DAYS
FROM TABLE(

DATE_RANGE(YEARSTART(2010), YEAREND(2010))
)
GROUP BY QUARTER(D);

Q DAYS
----------- -----------

1 90
2 91
3 92
4 92

See Also

• Source code

• DATE scalar function

1.7. Reference 21

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L1880

db2utils Documentation, Release 0.2

• DATE (built-in function)

• DAYS (built-in function)

EXPORT_SCHEMA table function

Generates EXPORT commands for all tables in the specified schema, including or excluding generated and/or identity
columns as requested.

Prototypes

EXPORT_SCHEMA(ASCHEMA VARCHAR(128), INCLUDE_GENERATED VARCHAR(1), INCLUDE_IDENTITY VARCHAR(1))
EXPORT_SCHEMA(INCLUDE_GENERATED VARCHAR(1), INCLUDE_IDENTITY VARCHAR(1))
EXPORT_SCHEMA()

RETURNS TABLE(
TABSCHEMA VARCHAR(128),
TABNAME VARCHAR(128),
SQL VARCHAR(8000)

)

Description

This table function can be used to generate a script containing EXPORT commands for all tables (not views) in the
specified schema or the current schema if the ASCHEMA parameter is omitted. This is intended to be used in scripts
for migrating databases or generating ETL scripts.

The generated EXPORT commands will target an IXF file named after the table, e.g. if ASCHEMA is DATAMART,
and the table is COUNTRIES the file would be named "DATAMART.COUNTRIES.IXF". The export command will
explicitly name all columns in the table. Likewise, LOAD_SCHEMA table function generates LOAD commands with
explicitly named columns. This is to ensure that if the target database’s tables are not declared in exactly the same
order as the source database, the transfer will still work if, for example, columns have been added to tables in the
source but in the table declaration, they were not placed at the end of the table.

If the optional INCLUDE_GENERATED parameter is ’Y’ (the default), GENERATED ALWAYS columns will be
included, otherwise they are excluded. GENERATED BY DEFAULT columns are always included. If the optional
INCLUDE_IDENTITY parameter is ’Y’ (the default), IDENTITY columns will be included, otherwise they are
excluded.

Parameters

ASCHEMA If provided, the schema containing the tables to generate EXPORT commands for. If omitted, defaults
to the value of the CURRENT SCHEMA special register.

INCLUDE_GENERATED If this parameter is ’Y’ then any columns defined as GENERATED in the source tables
will be included in the result. Contrariwise, if ’N’, generated columns will be excluded. Defaults to ’Y’ if
omitted.

INCLUDE_IDENTITY If this parameter is ’Y’ (and INCLUDE_GENERATED is ’Y’ given that identity
columns are by definition generated) then any columns defined as IDENTITY in the source tables will be
included in the result. Contrariwise, if ’N’, identity columns will be excluded (regardless of the value of
INCLUDE_GENERATED). Defaults to ’Y’ if omitted.

22 Chapter 1. Table of Contents

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000784.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000789.html

db2utils Documentation, Release 0.2

Returns

The function returns one row per table present in the source schema. Note that the function does not filter out invali-
dated or inoperative tables. The result table contains three columns:

TABSCHEMA Contains the name of the schema containing the table named in TABNAME.

TABNAME Contains the name of the table that will be exported by the command in the SQL column.

SQL Contains the text of the generated EXPORT command.

The purpose of including the (otherwise redundant) TABSCHEMA and TABNAME columns is to permit the result to
be filtered further without having to dissect the SQL column.

Examples

Generated EXPORT commands for all tables in the current schema, excluding all generated columns:

SELECT SQL FROM TABLE(EXPORT_SCHEMA(’N’, ’N’))

SQL
--
EXPORT TO "DB2INST1.CL_SCHED.IXF" OF IXF SELECT CLASS_CODE,DAY,STARTING,ENDING FROM DB2INST1.CL_SCHED
EXPORT TO "DB2INST1.DEPARTMENT.IXF" OF IXF SELECT DEPTNO,DEPTNAME,MGRNO,ADMRDEPT,LOCATION FROM DB2INST1.DEPARTMENT
EXPORT TO "DB2INST1.ACT.IXF" OF IXF SELECT ACTNO,ACTKWD,ACTDESC FROM DB2INST1.ACT
EXPORT TO "DB2INST1.EMPLOYEE.IXF" OF IXF SELECT EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,PHONENO,HIREDATE,JOB,EDLEVEL,SEX,BIRTHDATE,SALARY,BONUS,COMM FROM DB2INST1.EMPLOYEE
EXPORT TO "DB2INST1.EMP_PHOTO.IXF" OF IXF SELECT EMPNO,PHOTO_FORMAT,PICTURE FROM DB2INST1.EMP_PHOTO
EXPORT TO "DB2INST1.EMP_RESUME.IXF" OF IXF SELECT EMPNO,RESUME_FORMAT,RESUME FROM DB2INST1.EMP_RESUME
EXPORT TO "DB2INST1.PROJECT.IXF" OF IXF SELECT PROJNO,PROJNAME,DEPTNO,RESPEMP,PRSTAFF,PRSTDATE,PRENDATE,MAJPROJ FROM DB2INST1.PROJECT
EXPORT TO "DB2INST1.PROJACT.IXF" OF IXF SELECT PROJNO,ACTNO,ACSTAFF,ACSTDATE,ACENDATE FROM DB2INST1.PROJACT
EXPORT TO "DB2INST1.EMPPROJACT.IXF" OF IXF SELECT EMPNO,PROJNO,ACTNO,EMPTIME,EMSTDATE,EMENDATE FROM DB2INST1.EMPPROJACT
EXPORT TO "DB2INST1.IN_TRAY.IXF" OF IXF SELECT RECEIVED,SOURCE,SUBJECT,NOTE_TEXT FROM DB2INST1.IN_TRAY
EXPORT TO "DB2INST1.ORG.IXF" OF IXF SELECT DEPTNUMB,DEPTNAME,MANAGER,DIVISION,LOCATION FROM DB2INST1.ORG
EXPORT TO "DB2INST1.STAFF.IXF" OF IXF SELECT ID,NAME,DEPT,JOB,YEARS,SALARY,COMM FROM DB2INST1.STAFF
EXPORT TO "DB2INST1.SALES.IXF" OF IXF SELECT SALES_DATE,SALES_PERSON,REGION,SALES FROM DB2INST1.SALES
EXPORT TO "DB2INST1.STAFFG.IXF" OF IXF SELECT ID,NAME,DEPT,JOB,YEARS,SALARY,COMM FROM DB2INST1.STAFFG
EXPORT TO "DB2INST1.EMPMDC.IXF" OF IXF SELECT EMPNO,DEPT,DIV FROM DB2INST1.EMPMDC
EXPORT TO "DB2INST1.PRODUCT.IXF" OF IXF SELECT PID,NAME,PRICE,PROMOPRICE,PROMOSTART,PROMOEND,DESCRIPTION FROM DB2INST1.PRODUCT
EXPORT TO "DB2INST1.INVENTORY.IXF" OF IXF SELECT PID,QUANTITY,LOCATION FROM DB2INST1.INVENTORY
EXPORT TO "DB2INST1.CUSTOMER.IXF" OF IXF SELECT CID,INFO,HISTORY FROM DB2INST1.CUSTOMER
EXPORT TO "DB2INST1.PURCHASEORDER.IXF" OF IXF SELECT POID,STATUS,CUSTID,ORDERDATE,PORDER,COMMENTS FROM DB2INST1.PURCHASEORDER
EXPORT TO "DB2INST1.CATALOG.IXF" OF IXF SELECT NAME,CATLOG FROM DB2INST1.CATALOG
EXPORT TO "DB2INST1.SUPPLIERS.IXF" OF IXF SELECT SID,ADDR FROM DB2INST1.SUPPLIERS
EXPORT TO "DB2INST1.PRODUCTSUPPLIER.IXF" OF IXF SELECT PID,SID FROM DB2INST1.PRODUCTSUPPLIER

Generate EXPORT commands for all tables in the DB2INST1 schema whose names begin with ’EMP’, including
generated columns which aren’t also identity columns:

SELECT SQL
FROM TABLE(EXPORT_SCHEMA(’DB2INST1’, ’Y’, ’N’))
WHERE TABNAME LIKE ’EMP%’

SQL
--
EXPORT TO "DB2INST1.EMPLOYEE.IXF" OF IXF SELECT EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,PHONENO,HIREDATE,JOB,EDLEVEL,SEX,BIRTHDATE,SALARY,BONUS,COMM FROM DB2INST1.EMPLOYEE
EXPORT TO "DB2INST1.EMPMDC.IXF" OF IXF SELECT EMPNO,DEPT,DIV FROM DB2INST1.EMPMDC
EXPORT TO "DB2INST1.EMPPROJACT.IXF" OF IXF SELECT EMPNO,PROJNO,ACTNO,EMPTIME,EMSTDATE,EMENDATE FROM DB2INST1.EMPPROJACT
EXPORT TO "DB2INST1.EMP_PHOTO.IXF" OF IXF SELECT EMPNO,PHOTO_FORMAT,PICTURE FROM DB2INST1.EMP_PHOTO
EXPORT TO "DB2INST1.EMP_RESUME.IXF" OF IXF SELECT EMPNO,RESUME_FORMAT,RESUME FROM DB2INST1.EMP_RESUME

1.7. Reference 23

db2utils Documentation, Release 0.2

See Also

• Source code

• EXPORT_TABLE scalar function

• LOAD_TABLE scalar function

• LOAD_SCHEMA table function

• LOAD (built-in command)

• EXPORT (build-in command)

EXPORT_TABLE scalar function

Generates an EXPORT command for the specified table including or excluding generated and/or identity columns as
requested.

Prototypes

EXPORT_TABLE(ASCHEMA VARCHAR(128), ATABLE VARCHAR(128), INCLUDE_GENERATED VARCHAR(1), INCLUDE_IDENTITY VARCHAR(1))
EXPORT_TABLE(ATABLE VARCHAR(128), INCLUDE_GENERATED VARCHAR(1), INCLUDE_IDENTITY VARCHAR(1))
EXPORT_TABLE(ATABLE VARCHAR(128))

RETURNS VARCHAR(8000)

Description

This function generates an EXPORT command for the specified table in the specified schema or the current schema
if ASCHEMA is omitted. If the optional INCLUDE_GENERATED parameter is ’Y’ (the default), GENERATED
ALWAYS columns will be included, otherwise they are excluded. GENERATED BY DEFAULT columns are al-
ways included. If the optional INCLUDE_IDENTITY parameter is ’Y’ (the default), IDENTITY columns will be
included, otherwise they are excluded.

See EXPORT_SCHEMA table function for more information on the generated command.

Parameters

ASCHEMA If provided, the schema containing the table to generate an EXPORT command for. If omitted, defaults
to the value of the CURRENT SCHEMA special register.

ATABLE The name of the table to generate an EXPORT command for.

INCLUDE_GENERATED If this parameter is ’Y’ then any columns defined as GENERATED in the source table
will be included in the export. Contrariwise, if ’N’, generated columns will be excluded from the command.
Defaults to ’Y’ if omitted.

INCLUDE_IDENTITY If this parameter is ’Y’ (and INCLUDE_GENERATED is ’Y’ given that identity
columns are by definition generated) then any columns defined as IDENTITY in the source table will be in-
cluded in the export. Contrariwise, if ’N’, identity columns will be excluded from the command (regardless of
the value of INCLUDE_GENERATED). Defaults to ’Y’ if omitted.

24 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/export_load.sql#L204
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0008305.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0008303.html

db2utils Documentation, Release 0.2

Examples

Generate an EXPORT command for the EMPLOYEE table in the standard SAMPLE database:

VALUES EXPORT_TABLE(’EMPLOYEE’)

1
--...
EXPORT TO "DB2INST1.EMPLOYEE.IXF" OF IXF SELECT EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,PHONENO,HIREDATE,JOB,EDLEVEL,SEX,BIRTHDATE,SALARY,BONUS,COMM FROM DB2INST1.EMPLOYEE

Generate an EXPORT command for the PEOPLE table (DDL included) excluding IDENTITY columns:

CREATE TABLE PEOPLE (
ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY,
NAME VARCHAR(100) DEFAULT ’’ NOT NULL,
GENDER CHAR(1) NOT NULL,
DOB DATE NOT NULL,
TITLE VARCHAR(10) NOT NULL GENERATED ALWAYS AS (

CASE GENDER
WHEN ’M’ THEN ’Mr.’
WHEN ’F’ THEN ’Ms.’

END
),
CONSTRAINT GENDER_CK CHECK (GENDER IN (’M’, ’F’))

);

VALUES EXPORT_TABLE(’PEOPLE’, ’Y’, ’N’);

1
--...
EXPORT TO "DB2INST1.PEOPLE.IXF" OF IXF SELECT NAME,GENDER,DOB,TITLE FROM DB2INST1.PEOPLE

See Also

• Source code

• EXPORT_SCHEMA table function

• LOAD_TABLE scalar function

• LOAD_SCHEMA table function

• LOAD (built-in command)

• EXPORT (build-in command)

HOUREND scalar function

Returns a TIMESTAMP at the end of AHOUR on the date AYEAR, AMONTH, ADAY, or at the end of the hour of
ATIMESTAMP.

Prototypes

HOUREND(AYEAR INTEGER, AMONTH INTEGER, ADAY INTEGER, AHOUR INTEGER)
HOUREND(ATIMESTAMP TIMESTAMP)
HOUREND(ATIMESTAMP VARCHAR(26))

1.7. Reference 25

https://github.com/waveform80/db2utils/blob/master/export_load.sql#L132
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0008305.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0008303.html

db2utils Documentation, Release 0.2

RETURNS TIMESTAMP

Description

Returns a TIMESTAMP value representing the last microsecond of AHOUR in the date given by AYEAR,
AMONTH, and ADAY, or of the timestamp given by ATIMESTAMP depending on the variant of the function
that is called.

Parameters

AYEAR If provided, the year component of the resulting timestamp.

AMONTH If provided, the month component of the resulting timestamp.

ADAY If provided, the day component of the resulting timestamp.

AHOUR If provided, the hour component of the resulting timestamp.

ATIMESTAMP If provided, the timestamp from which to derive the end of the hour. Either AYEAR, AMONTH,
ADAY, and AHOUR, or ATIMESTAMP must be provided.

Examples

Calculate the last microsecond of the specified hour:

VALUES HOUREND(’2010-01-23 04:56:00’);

1

2010-01-23-04.59.59.999999

Calculate the end of the first working day in 2011:

VALUES HOUREND(2011, 1, DAY(
CASE WHEN DAYOFWEEK(YEARSTART(2011)) IN (1, 7)
THEN NEXT_DAYOFWEEK(YEARSTART(2011), 2)
ELSE YEARSTART(2011)

END), 4);

1

2011-01-03-04.59.59.999999

See Also

• Source code

• HOURSTART scalar function

• HOUR (built-in function)

26 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L1620
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000812.html

db2utils Documentation, Release 0.2

HOURSTART scalar function

Returns a TIMESTAMP at the start of AHOUR on the date AYEAR, AMONTH, ADAY, or at the start of the hour
of ATIMESTAMP.

Prototypes

HOURSTART(AYEAR INTEGER, AMONTH INTEGER, ADAY INTEGER, AHOUR INTEGER)
HOURSTART(ATIMESTAMP TIMESTAMP)
HOURSTART(ATIMESTAMP VARCHAR(26))

RETURNS TIMESTAMP

Description

Returns a TIMESTAMP value representing the first microsecond of AHOUR in the date given by AYEAR,
AMONTH, and ADAY, or of the timestamp given by ATIMESTAMP depending on the variant of the function
that is called.

Parameters

AYEAR If provided, the year component of the resulting timestamp.

AMONTH If provided, the month component of the resulting timestamp.

ADAY If provided, the day component of the resulting timestamp.

AHOUR If provided, the hour component of the resulting timestamp.

ATIMESTAMP If provided, the timestamp from which to derive the start of the hour. Either AYEAR, AMONTH,
ADAY, and AHOUR, or ATIMESTAMP must be provided.

Examples

Truncate the specified timestamp to the nearest hour:

VALUES HOURSTART(’2010-01-23 04:56:00’);

1

2010-01-23-04.00.00.000000

Calculate the start of the first working day in 2011:

VALUES HOURSTART(2011, 1, DAY(
CASE WHEN DAYOFWEEK(YEARSTART(2011)) IN (1, 7)
THEN NEXT_DAYOFWEEK(YEARSTART(2011), 2)
ELSE YEARSTART(2011)

END), 9);

1

2011-01-03-09.00.00.000000

1.7. Reference 27

db2utils Documentation, Release 0.2

See Also

• Source code

• HOUREND scalar function

• HOUR (built-in function)

LOAD_SCHEMA table function

Generates LOAD commands for all tables in the specified schema, ignoring or overriding generated and/or identity
columns as requested.

Prototypes

LOAD_SCHEMA(ASCHEMA VARCHAR(128), ATABLE VARCHAR(128), INCLUDE_GENERATED VARCHAR(1), INCLUDE_IDENTITY VARCHAR(1))
LOAD_SCHEMA(ATABLE VARCHAR(128), INCLUDE_GENERATED VARCHAR(1), INCLUDE_IDENTITY VARCHAR(1))
LOAD_SCHEMA(ATABLE VARCHAR(128))

RETURNS TABLE(
TABSCHEMA VARCHAR(128),
TABNAME VARCHAR(128),
SQL VARCHAR(8000)

)

Description

This table function can be used to generate a script containing LOAD commands for all tables (not views) in the
specified schema or the current schema if the ASCHEMA parameter is omitted. This is intended to be used in scripts
for migrating the database.

This function is the counterpart of EXPORT_SCHEMA table function. See EXPORT_SCHEMA table function and
LOAD_TABLE scalar function function for more information on the commands generated.

Parameters

ASCHEMA If provided, the schema containing the tables to generate LOAD commands for. If omitted, defaults to
the value of the CURRENT SCHEMA special register.

INCLUDE_GENERATED If this parameter is ’Y’ then the routine assumes generated columns are included in the
source files, and the LOAD commands will include the GENERATEDOVERRIDE modifier. Otherwise, if ’N’,
the GENERATEDMISSING modifier will be used instead. Defaults to ’Y’ if omitted.

INCLUDE_IDENTITY If this parameter is ’Y’ then the routine assumes identity columns are included in the source
files, and the LOAD commands will include the IDENTITYOVERRIDE modifier. Otherwise, if ’N’, the IDEN-
TITYMISSING modifier will be used instead. Defaults to ’Y’ if omitted.

Returns

The function returns one row per table present in the source schema. Note that the function does not filter out invali-
dated or inoperative tables. The result table contains three columns:

TABSCHEMA Contains the name of the schema containing the table named in TABNAME.

28 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L1568
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000812.html

db2utils Documentation, Release 0.2

TABNAME Contains the name of the table that will be loaded by the command in the SQL column.

SQL Contains the text of the generated LOAD command.

The purpose of including the (otherwise redundant) TABSCHEMA and TABNAME columns is to permit the result to
be filtered further without having to dissect the SQL column.

Examples

Generated LOAD commands for all tables in the current schema, excluding all generated columns:

SELECT SQL FROM TABLE(LOAD_SCHEMA(’N’, ’N’))

SQL
--
LOAD FROM "DB2INST1.CL_SCHED.IXF" OF IXF METHOD N (CLASS_CODE,DAY,STARTING,ENDING) REPLACE INTO DB2INST1.CL_SCHED (CLASS_CODE,DAY,STARTING,ENDING)
LOAD FROM "DB2INST1.DEPARTMENT.IXF" OF IXF METHOD N (DEPTNO,DEPTNAME,MGRNO,ADMRDEPT,LOCATION) REPLACE INTO DB2INST1.DEPARTMENT (DEPTNO,DEPTNAME,MGRNO,ADMRDEPT,LOCATION)
LOAD FROM "DB2INST1.ACT.IXF" OF IXF METHOD N (ACTNO,ACTKWD,ACTDESC) REPLACE INTO DB2INST1.ACT (ACTNO,ACTKWD,ACTDESC)
LOAD FROM "DB2INST1.EMPLOYEE.IXF" OF IXF METHOD N (EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,PHONENO,HIREDATE,JOB,EDLEVEL,SEX,BIRTHDATE,SALARY,BONUS,COMM) REPLACE INTO DB2INST1.EMPLOYEE (EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,PHONENO,HIREDATE,JOB,EDLEVEL,SEX,BIRTHDATE,SALARY,BONUS,COMM)
LOAD FROM "DB2INST1.EMP_PHOTO.IXF" OF IXF METHOD N (EMPNO,PHOTO_FORMAT,PICTURE) REPLACE INTO DB2INST1.EMP_PHOTO (EMPNO,PHOTO_FORMAT,PICTURE)
LOAD FROM "DB2INST1.EMP_RESUME.IXF" OF IXF METHOD N (EMPNO,RESUME_FORMAT,RESUME) REPLACE INTO DB2INST1.EMP_RESUME (EMPNO,RESUME_FORMAT,RESUME)
LOAD FROM "DB2INST1.PROJECT.IXF" OF IXF METHOD N (PROJNO,PROJNAME,DEPTNO,RESPEMP,PRSTAFF,PRSTDATE,PRENDATE,MAJPROJ) REPLACE INTO DB2INST1.PROJECT (PROJNO,PROJNAME,DEPTNO,RESPEMP,PRSTAFF,PRSTDATE,PRENDATE,MAJPROJ)
LOAD FROM "DB2INST1.PROJACT.IXF" OF IXF METHOD N (PROJNO,ACTNO,ACSTAFF,ACSTDATE,ACENDATE) REPLACE INTO DB2INST1.PROJACT (PROJNO,ACTNO,ACSTAFF,ACSTDATE,ACENDATE)
LOAD FROM "DB2INST1.EMPPROJACT.IXF" OF IXF METHOD N (EMPNO,PROJNO,ACTNO,EMPTIME,EMSTDATE,EMENDATE) REPLACE INTO DB2INST1.EMPPROJACT (EMPNO,PROJNO,ACTNO,EMPTIME,EMSTDATE,EMENDATE)
LOAD FROM "DB2INST1.IN_TRAY.IXF" OF IXF METHOD N (RECEIVED,SOURCE,SUBJECT,NOTE_TEXT) REPLACE INTO DB2INST1.IN_TRAY (RECEIVED,SOURCE,SUBJECT,NOTE_TEXT)
LOAD FROM "DB2INST1.ORG.IXF" OF IXF METHOD N (DEPTNUMB,DEPTNAME,MANAGER,DIVISION,LOCATION) REPLACE INTO DB2INST1.ORG (DEPTNUMB,DEPTNAME,MANAGER,DIVISION,LOCATION)
LOAD FROM "DB2INST1.STAFF.IXF" OF IXF METHOD N (ID,NAME,DEPT,JOB,YEARS,SALARY,COMM) REPLACE INTO DB2INST1.STAFF (ID,NAME,DEPT,JOB,YEARS,SALARY,COMM)
LOAD FROM "DB2INST1.SALES.IXF" OF IXF METHOD N (SALES_DATE,SALES_PERSON,REGION,SALES) REPLACE INTO DB2INST1.SALES (SALES_DATE,SALES_PERSON,REGION,SALES)
LOAD FROM "DB2INST1.STAFFG.IXF" OF IXF METHOD N (ID,NAME,DEPT,JOB,YEARS,SALARY,COMM) REPLACE INTO DB2INST1.STAFFG (ID,NAME,DEPT,JOB,YEARS,SALARY,COMM)
LOAD FROM "DB2INST1.EMPMDC.IXF" OF IXF METHOD N (EMPNO,DEPT,DIV) REPLACE INTO DB2INST1.EMPMDC (EMPNO,DEPT,DIV)
LOAD FROM "DB2INST1.PRODUCT.IXF" OF IXF METHOD N (PID,NAME,PRICE,PROMOPRICE,PROMOSTART,PROMOEND,DESCRIPTION) REPLACE INTO DB2INST1.PRODUCT (PID,NAME,PRICE,PROMOPRICE,PROMOSTART,PROMOEND,DESCRIPTION)
LOAD FROM "DB2INST1.INVENTORY.IXF" OF IXF METHOD N (PID,QUANTITY,LOCATION) REPLACE INTO DB2INST1.INVENTORY (PID,QUANTITY,LOCATION)
LOAD FROM "DB2INST1.CUSTOMER.IXF" OF IXF METHOD N (CID,INFO,HISTORY) REPLACE INTO DB2INST1.CUSTOMER (CID,INFO,HISTORY)
LOAD FROM "DB2INST1.PURCHASEORDER.IXF" OF IXF METHOD N (POID,STATUS,CUSTID,ORDERDATE,PORDER,COMMENTS) REPLACE INTO DB2INST1.PURCHASEORDER (POID,STATUS,CUSTID,ORDERDATE,PORDER,COMMENTS)
LOAD FROM "DB2INST1.CATALOG.IXF" OF IXF METHOD N (NAME,CATLOG) REPLACE INTO DB2INST1.CATALOG (NAME,CATLOG)
LOAD FROM "DB2INST1.SUPPLIERS.IXF" OF IXF METHOD N (SID,ADDR) REPLACE INTO DB2INST1.SUPPLIERS (SID,ADDR)
LOAD FROM "DB2INST1.PRODUCTSUPPLIER.IXF" OF IXF METHOD N (PID,SID) REPLACE INTO DB2INST1.PRODUCTSUPPLIER (PID,SID)

Generate LOAD commands for all tables in the DB2INST1 schema whose names begin with ’EMP’, including gen-
erated columns which aren’t also identity columns:

SELECT SQL
FROM TABLE(LOAD_SCHEMA(’DB2INST1’, ’Y’, ’N’))
WHERE TABNAME LIKE ’EMP%’

SQL
--
LOAD FROM "DB2INST1.EMPLOYEE.IXF" OF IXF METHOD N (EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,PHONENO,HIREDATE,JOB,EDLEVEL,SEX,BIRTHDATE,SALARY,BONUS,COMM) REPLACE INTO DB2INST1.EMPLOYEE (EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,PHONENO,HIREDATE,JOB,EDLEVEL,SEX,BIRTHDATE,SALARY,BONUS,COMM)
LOAD FROM "DB2INST1.EMPMDC.IXF" OF IXF METHOD N (EMPNO,DEPT,DIV) REPLACE INTO DB2INST1.EMPMDC (EMPNO,DEPT,DIV)
LOAD FROM "DB2INST1.EMPPROJACT.IXF" OF IXF METHOD N (EMPNO,PROJNO,ACTNO,EMPTIME,EMSTDATE,EMENDATE) REPLACE INTO DB2INST1.EMPPROJACT (EMPNO,PROJNO,ACTNO,EMPTIME,EMSTDATE,EMENDATE)
LOAD FROM "DB2INST1.EMP_PHOTO.IXF" OF IXF METHOD N (EMPNO,PHOTO_FORMAT,PICTURE) REPLACE INTO DB2INST1.EMP_PHOTO (EMPNO,PHOTO_FORMAT,PICTURE)
LOAD FROM "DB2INST1.EMP_RESUME.IXF" OF IXF METHOD N (EMPNO,RESUME_FORMAT,RESUME) REPLACE INTO DB2INST1.EMP_RESUME (EMPNO,RESUME_FORMAT,RESUME)

See Also

• Source code

• EXPORT_TABLE scalar function

1.7. Reference 29

https://github.com/waveform80/db2utils/blob/master/export_load.sql#L426

db2utils Documentation, Release 0.2

• EXPORT_SCHEMA table function

• LOAD_TABLE scalar function

• LOAD (built-in command)

• EXPORT (built-in command)

LOAD_TABLE scalar function

Generates a LOAD command for the specified table including or excluding generated and/or identity columns as
requested.

Prototypes

LOAD_TABLE(ASCHEMA VARCHAR(128), ATABLE VARCHAR(128), INCLUDE_GENERATED VARCHAR(1), INCLUDE_IDENTITY VARCHAR(1))
LOAD_TABLE(ATABLE VARCHAR(128), INCLUDE_GENERATED VARCHAR(1), INCLUDE_IDENTITY VARCHAR(1))
LOAD_TABLE(ATABLE VARCHAR(128))

RETURNS VARCHAR(8000)

Description

This function generates a LOAD command for the specified table in the specified schema or the current schema if
ASCHEMA is omitted. If the optional INCLUDE_GENERATED parameter is ’Y’ (the default), GENERATED
ALWAYS columns are assumed to be included in the source file, and the LOAD command will utilize GENERATE-
DOVERRIDE, otherwise the LOAD command will utilize GENERATEDMISSING. GENERATED BY DEFAULT
columns are treated as ordinary columns. If the optional INCLUDE_IDENTITY parameter is ’Y’ (the default),
IDENTITY columns are assumed to be included in the source file, and the LOAD command will utilize IDENTITY-
OVERRIDE, otherwise the LOAD command will utilize IDENTITYMISSING.

See EXPORT_SCHEMA table function for more information on the generated command.

Parameters

ASCHEMA If provided, the schema containing the table to generate a LOAD command for. If omitted, defaults to
the value of the CURRENT SCHEMA special register.

ATABLE The name of the table to generate a LOAD command for.

INCLUDE_GENERATED If this parameter is ’Y’ then the routine assumes generated columns are included in the
source file, and the LOAD command will include the GENERATEDOVERRIDE modifier. Otherwise, if ’N’,
the GENERATEDMISSING modifier will be used instead. Defaults to ’Y’ if omitted.

INCLUDE_IDENTITY If this parameter is ’Y’ then the routine assumes identity columns are included in the source
file, and the LOAD command will include the IDENTITYOVERRIDE modifier. Otherwise, if ’N’, the IDENTI-
TYMISSING modifier will be used instead. Defaults to ’Y’ if omitted.

Examples

Generate a LOAD command for the EMPLOYEE table in the standard SAMPLE database:

30 Chapter 1. Table of Contents

http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0008305.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0008303.html

db2utils Documentation, Release 0.2

VALUES LOAD_TABLE(’EMPLOYEE’)

1
--...
LOAD FROM "DB2INST1.EMPLOYEE.IXF" OF IXF METHOD N (EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,PHONENO,HIREDATE,JOB,EDLEVEL,SEX,BIRTHDATE,SALARY,BONUS,COMM) REPLACE INTO DB2INST1.EMPLOYEE (EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,PHONENO,HIREDATE,JOB,EDLEVEL,SEX,BIRTHDATE,SALARY,BONUS,COMM)

Generate a LOAD command for the PEOPLE table (DDL included) excluding IDENTITY columns:

CREATE TABLE PEOPLE (
ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY,
NAME VARCHAR(100) DEFAULT ’’ NOT NULL,
GENDER CHAR(1) NOT NULL,
DOB DATE NOT NULL,
TITLE VARCHAR(10) NOT NULL GENERATED ALWAYS AS (

CASE GENDER
WHEN ’M’ THEN ’Mr.’
WHEN ’F’ THEN ’Ms.’

END
),
CONSTRAINT GENDER_CK CHECK (GENDER IN (’M’, ’F’))

);

VALUES LOAD_TABLE(’PEOPLE’, ’Y’, ’N’);

1
--
LOAD FROM "DB2INST1.PEOPLE.IXF" OF IXF MODIFIED BY GENERATEDOVERRIDE,IDENTITYMISSING METHOD N (NAME,GENDER,DOB,TITLE) REPLACE INTO DB2INST1.PEOPLE (NAME,GENDER,DOB,TITLE)

See Also

• Source code

• EXPORT_TABLE scalar function

• EXPORT_SCHEMA table function

• LOAD_SCHEMA table function

• LOAD (built-in command)

• EXPORT (build-in command)

MINUTEEND scalar function

Returns a TIMESTAMP at the end of AHOUR:AMINUTE on the date AYEAR, AMONTH, ADAY, or at the end
of the minute of ATIMESTAMP.

Prototypes

MINUTEEND(AYEAR INTEGER, AMONTH INTEGER, ADAY INTEGER, AHOUR INTEGER, AMINUTE INTEGER)
MINUTEEND(ATIMESTAMP TIMESTAMP)
MINUTEEND(ATIMESTAMP VARCHAR(26))

RETURNS TIMESTAMP

1.7. Reference 31

https://github.com/waveform80/db2utils/blob/master/export_load.sql#L306
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0008305.html
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0008303.html

db2utils Documentation, Release 0.2

Description

Returns a TIMESTAMP value representing the last microsecond of AMINUTE in AHOUR on the date given by
AYEAR, AMONTH, and ADAY, or of the timestamp given by ATIMESTAMP depending on the variant of the
function that is called.

Parameters

AYEAR If provided, the year component of the resulting timestamp.

AMONTH If provided, the month component of the resulting timestamp.

ADAY If provided, the day component of the resulting timestamp.

AHOUR If provided, the hour component of the resulting timestamp.

AMINUTE If provided, the minute component of the resulting timestamp.

ATIMESTAMP If provided, the timestamp from which to derive the end of the minute. Either AYEAR, AMONTH,
ADAY, AHOUR, and AMINUTE, or ATIMESTAMP must be provided.

Examples

Round the specified timestamp up to one microsecond before the next minute:

VALUES MINUTEEND(’2010-01-23 04:56:12’);

1

2010-01-23-04.56.59.999999

Generate a timestamp at the end of a minute with the specified fields:

VALUES MINUTEEND(2010, 2, 14, 9, 30);

1

2010-02-14-09.30.59.999999

See Also

• Source code

• MINUTESTART scalar function

• MINUTE (built-in function)

MINUTESTART scalar function

Returns a TIMESTAMP at the start of AHOUR:AMINUTE on the date AYEAR, AMONTH, ADAY, or at the start
of the minute of ATIMESTAMP.

32 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L1724
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000828.html

db2utils Documentation, Release 0.2

Prototypes

MINUTESTART(AYEAR INTEGER, AMONTH INTEGER, ADAY INTEGER, AHOUR INTEGER, AMINUTE INTEGER)
MINUTESTART(ATIMESTAMP TIMESTAMP)
MINUTESTART(ATIMESTAMP VARCHAR(26))

RETURNS TIMESTAMP

Description

Returns a TIMESTAMP value representing the first microsecond of AMINUTE in AHOUR on the date given by
AYEAR, AMONTH, and ADAY, or of the timestamp given by ATIMESTAMP depending on the variant of the
function that is called.

Parameters

AYEAR If provided, the year component of the resulting timestamp.

AMONTH If provided, the month component of the resulting timestamp.

ADAY If provided, the day component of the resulting timestamp.

AHOUR If provided, the hour component of the resulting timestamp.

AMINUTE If provided, the minute component of the resulting timestamp.

ATIMESTAMP If provided, the timestamp from which to derive the start of the minute. Either AYEAR, AMONTH,
ADAY, AHOUR, and AMINUTE, or ATIMESTAMP must be provided.

Examples

Truncate the specified timestamp to the nearest minute:

VALUES MINUTESTART(’2010-01-23 04:56:12’);

1

2010-01-23-04.56.00.000000

Generate a timestamp at the start of a minute with the specified fields:

VALUES MINUTESTART(2010, 2, 14, 9, 30);

1

2010-02-14-09.30.00.000000

See Also

• Source code

• MINUTEEND scalar function

• MINUTE (built-in function)

1.7. Reference 33

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L1672
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000828.html

db2utils Documentation, Release 0.2

MONTH_CLAIM scalar function

Returns the month that ADATE exists within, according to the CLAIM calendar.

Prototypes

MONTH_CLAIM(ADATE DATE)
MONTH_CLAIM(ADATE TIMESTAMP)
MONTH_CLAIM(ADATE VARCHAR(26))

RETURNS SMALLINT

Description

Returns the month of ADATE, according to the CLAIM calendar. ADATE can be expressed as a DATE value, a
TIMESTAMP, or a VARCHAR containing a valid string representation of a date or timestamp. If ADATE is NULL,
the result is NULL. Otherwise, the result will be in the range 1-12.

Parameters

ADATE The date to calculate the month of, according to the CLAIM calendar.

Examples

Calculate the CLAIM month for the 31st of January, 2010:

VALUES MONTH_CLAIM(DATE(2010, 1, 31));

1

2

Calculate the length of all CLAIM months in 2010:

SELECT MONTH_CLAIM(D) AS MONTH, COUNT(*) AS DAYS
FROM TABLE(DATE_RANGE(YEARSTART_CLAIM(2010), YEAREND_CLAIM(2010)))
GROUP BY MONTH_CLAIM(D);

MONTH DAYS
------ -----------

1 28
2 28
3 35
4 28
5 35
6 28
7 28
8 35
9 28

10 28
11 35
12 28

34 Chapter 1. Table of Contents

db2utils Documentation, Release 0.2

See Also

• Source code

• MONTH (built-in function)

• DAY_CLAIM

• WEEK_CLAIM scalar function

• QUARTER_CLAIM scalar function

• YEAR_CLAIM scalar function

MONTHEND scalar function

Returns the last day of month AMONTH in the year AYEAR, or the last day of the month of ADATE.

Prototypes

MONTHEND(AYEAR INTEGER, AMONTH INTEGER)
MONTHEND(ADATE DATE)
MONTHEND(ADATE TIMESTAMP)
MONTHEND(ADATE VARCHAR(26))

RETURNS DATE

Description

Returns a DATE representing the last day of AMONTH in AYEAR, or the last day of the month of ADATE depending
on the variant of the function that is called.

Parameters

AYEAR If provided, the year of AMONTH for which to return the ending date.

AMONTH If provided, the month for which to return to the ending date.

ADATE If provided the date in the month for which to return the ending date. Either AYEAR and AMONTH, or
ADATE must be specified.

Examples

Calculate the ending date of the second month of 2010:

VALUES MONTHEND(2010, 2);

1

2010-02-28

Calculate the ending date for the 28th of January, 2009:

1.7. Reference 35

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L2698
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000830.html

db2utils Documentation, Release 0.2

VALUES MONTHEND(’2009-01-28’);

1

2009-01-31

See Also

• Source code

• MONTHSTART scalar function

• MONTH (built-in function)

MONTHEND_CLAIM scalar function

Returns the last day of month AMONTH in the year AYEAR, or the last day of the month of ADATE, according to
the CLAIM calendar.

Prototypes

MONTHEND_CLAIM(AYEAR INTEGER, AMONTH INTEGER)
MONTHEND_CLAIM(ADATE DATE)
MONTHEND_CLAIM(ADATE TIMESTAMP)
MONTHEND_CLAIM(ADATE VARCHAR(26))

RETURNS DATE

Description

Returns a DATE representing the last day of AMONTH in AYEAR, or the last day of the month of ADATE depending
on the variant of the function that is called, according to the CLAIM calendar.

Parameters

AYEAR If provided, the year of AMONTH for which to return the ending date.

AMONTH If provided, the month for which to return to the ending date.

ADATE If provided the date in the month for which to return the ending date. Either AYEAR and AMONTH, or
ADATE must be specified.

Examples

Calculate the end of the second month of 2010, according to the CLAIM calendar:

VALUES MONTHEND_CLAIM(2010, 2);

1

2010-02-19

36 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L518
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000830.html

db2utils Documentation, Release 0.2

Calculate the CLAIM month ending date for the 28th of January, 2009 (which is actually in February according to the
CLAIM calendar):

VALUES MONTHEND_CLAIM(’2009-01-28’);

1

2009-02-20

See Also

• Source code

• MONTHSTART_CLAIM scalar function

MONTHSTART scalar function

Returns the first day of the month that ADATE exists within, or the first day of the month AMONTH in the year
AYEAR.

Prototypes

MONTHSTART(AYEAR INTEGER, AMONTH INTEGER)
MONTHSTART(ADATE DATE)
MONTHSTART(ADATE TIMESTAMP)
MONTHSTART(ADATE VARCHAR(26))

RETURNS DATE

Description

Returns a DATE representing the first day of AMONTH in AYEAR, or the first day of the month of ADATE depend-
ing on the variant of the function that is called.

Parameters

AYEAR If provided, the year of AMONTH for which to return the starting date.

AMONTH If provided, the month for which to return to the starting date.

ADATE If provided the date in the month for which to return the starting date. Either AYEAR and AMONTH, or
ADATE must be specified.

Examples

Calculate the starting date of the second month in 2010:

VALUES MONTHSTART(2010, 2);

1

2010-02-01

1.7. Reference 37

https://github.com/waveform80/db2utils/blob/ibm/date_time.sql#L2610

db2utils Documentation, Release 0.2

Calculate the start of the month for the 28th of January, 2009:

VALUES MONTHSTART(’2009-01-28’);

1

2009-01-01

See Also

• Source code

• MONTHEND scalar function

• MONTH (built-in function)

MONTHSTART_CLAIM scalar function

Returns the first day of the month that ADATE exists within, or the first day of the month AMONTH in the year
AYEAR, according to the CLAIM calendar.

Prototypes

MONTHSTART_CLAIM(AYEAR INTEGER, AMONTH INTEGER)
MONTHSTART_CLAIM(ADATE DATE)
MONTHSTART_CLAIM(ADATE TIMESTAMP)
MONTHSTART_CLAIM(ADATE VARCHAR(26))

RETURNS DATE

Description

Returns a DATE representing the first day of AMONTH in AYEAR, or the first day of the month of ADATE depend-
ing on the variant of the function that is called, according to the CLAIM calendar.

Parameters

AYEAR If provided, the year of AMONTH for which to return the starting date.

AMONTH If provided, the month for which to return to the starting date.

ADATE If provided the date in the month for which to return the starting date. Either AYEAR and AMONTH, or
ADATE must be specified.

Examples

Calculate the starting date of the second CLAIM calendar month in 2010:

VALUES MONTHSTART_CLAIM(2010, 2);

38 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L454
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000830.html

db2utils Documentation, Release 0.2

1

2010-01-23

Calculate the start of the CLAIM calendar month for the 28th of January, 2009 (which actually exists in February,
according to the CLAIM calendar):

VALUES MONTHSTART_CLAIM(’2009-01-28’);

1

2009-01-24

See Also

• Source code

• MONTHEND_CLAIM scalar function

MONTHWEEK scalar function

Returns the week of the month that ADATE exists within (weeks start on a Sunday, result will be in the range 1-6).

Prototypes

MONTHWEEK(ADATE DATE)
MONTHWEEK(ADATE TIMESTAMP)
MONTHWEEK(ADATE VARCHAR(26))

RETURNS SMALLINT

Description

Returns the week of the month of ADATE, where weeks start on a Sunday. The result will be in the range 1-6 as
partial weeks are permitted. For example, if the first day of a month is a Saturday, it will be counted as week 1, which
lasts one day. The next day, Sunday, will start week 2.

Parameters

ADATE The date to calculate the week of the month for.

Examples

Calculate the week of the month for the 31st of January, 2010:

VALUES MONTHWEEK(DATE(2010, 1, 31));

1

6

1.7. Reference 39

https://github.com/waveform80/db2utils/blob/ibm/date_time.sql#L2638

db2utils Documentation, Release 0.2

Calculate the length of all weeks in January 2010:

SELECT MONTHWEEK(D) AS WEEK_NUM, COUNT(*) AS WEEK_LENGTH
FROM TABLE(DATE_RANGE(MONTHSTART(2010, 1), MONTHEND(2010, 1)))
GROUP BY MONTHWEEK(D);

WEEK_NUM WEEK_LENGTH
-------- -----------

1 2
2 7
3 7
4 7
5 7
6 1

See Also

• Source code

• MONTHWEEK_ISO scalar function

MONTHWEEK_CLAIM scalar function

Returns the week of the month that ADATE exists within, according to the CLAIM calendar.

Prototypes

MONTHWEEK_CLAIM(ADATE DATE)
MONTHWEEK_CLAIM(ADATE TIMESTAMP)
MONTHWEEK_CLAIM(ADATE VARCHAR(26))

RETURNS SMALLINT

Description

Returns the week of the month of ADATE, according to the CLAIM calendar. ADATE can be expressed as a DATE
value, a TIMESTAMP, or a VARCHAR containing a valid string representation of a date or timestamp. If ADATE is
NULL, the result is NULL. Otherwise, the result is a SMALLINT between 1 and 5.

Parameters

ADATE The date to calculate the week of the month for, according to the CLAIM calendar.

Examples

Calculate the week of CLAIM month for the 1st of June, 2010:

VALUES MONTHWEEK_CLAIM(DATE(2010, 6, 1));

40 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L587

db2utils Documentation, Release 0.2

1

1

Calculate the week of CLAIM month for the 31st of January, 2010:

VALUES MONTHWEEK_CLAIM(’2010-01-31’);

1

2

See Also

• Source code

• DAY_CLAIM

• WEEK_CLAIM scalar function

• MONTH_CLAIM scalar function

• YEAR_CLAIM scalar function

MONTHWEEK_ISO scalar function

Returns the week of the month that ADATE exists within (weeks start on a Monday, result will be in the range 1-6).

Prototypes

MONTHWEEK_ISO(ADATE DATE)
MONTHWEEK_ISO(ADATE TIMESTAMP)
MONTHWEEK_ISO(ADATE VARCHAR(26))

RETURNS SMALLINT

Description

Returns the week of the month of ADATE, where weeks start on a Monday. The result will be in the range 1-6 as
partial weeks are permitted. For example, if the first day of a month is a Sunday, it will be counted as week 1, which
lasts one day. The next day, Monday, will start week 2.

Parameters

ADATE The date to calculate the week of the month for.

Examples

Calculate the week of the month for the 31st of January, 2010:

1.7. Reference 41

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L3111

db2utils Documentation, Release 0.2

VALUES MONTHWEEK(DATE(2010, 1, 31));

1

5

Calculate the length of all weeks in January 2010:

SELECT MONTHWEEK_ISO(D) AS WEEK_NUM, COUNT(*) AS WEEK_LENGTH
FROM TABLE(DATE_RANGE(MONTHSTART(2010, 1), MONTHEND(2010, 1)))
GROUP BY MONTHWEEK_ISO(D);

WEEK_NUM WEEK_LENGTH
-------- -----------

1 3
2 7
3 7
4 7
5 7

See Also

• Source code

• MONTHWEEK scalar function

NEXT_DAYOFWEEK scalar function

Returns the earliest date later than ADATE, which is also a particular day of the week, ADOW (1=Sunday, 2=Monday,
6=Saturday, etc.)

Prototypes

NEXT_DAYOFWEEK(ADATE DATE, ADOW INTEGER)
NEXT_DAYOFWEEK(ADATE TIMESTAMP, ADOW INTEGER)
NEXY_DAYOFWEEK(ADATE VARCHAR(26), ADOW INTEGER)
NEXT_DAYOFWEEK(ADOW INTEGER)

RETURNS DATE

Description

Returns the specified day of the week following the given date. Days of the week are specified in the same fashion as
the built-in DAYOFWEEK function (i.e. 1=Sunday, 2=Monday, ... 7=Saturday). If ADATE is omitted the current date
is used.

Parameters

ADATE The date after which to return a specific day of the week. If this parameter is omitted the CURRENT DATE
special register is used.

ADOW The day of the week to find specified as an integer where 1 represents Sunday, 2 is Monday, and so on.

42 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L638

db2utils Documentation, Release 0.2

Examples

Find the next Monday after the start of 2010:

VALUES VARCHAR(NEXT_DAYOFWEEK(YEARSTART(2010), 2), ISO);

1

2010-01-04

Find the third Thursday in February 2010 (note, the CASE expression is necessary in case February starts on a Thurs-
day, in which case NEXT_DAYOFWEEK will be returning the date of the second Thursday in the month, not the
first):

VALUES VARCHAR(NEXT_DAYOFWEEK(MONTHSTART(2010, 2), 5) +
CASE DAYOFWEEK(MONTHSTART(2010, 2))
WHEN 5 THEN 7
ELSE 14

END DAYS, ISO);

1

2010-02-18

See Also

• Source code

• PRIOR_DAYOFWEEK scalar function

PCRE_GROUPS table function

Searches for regular expression PATTERN in TEXT, returning a table detailing all matched groups.

Prototypes

PCRE_GROUPS(PATTERN VARCHAR(1000), TEXT VARCHAR(4000))

RETURNS TABLE(
GROUP INTEGER,
POSITION INTEGER,
CONTENT VARCHAR(4000)

)

Description

PCRE groups table function. Given a regular expression in PATTERN, and some text to search in TEXT, the function
performs a search for PATTERN in the text and returns the result as a table containing a row for each matching group
(including group 0 which implicitly covers the entire search pattern).

1.7. Reference 43

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L119

db2utils Documentation, Release 0.2

Parameters

PATTERN The Perl-compatible Regular Expression (PCRE) to search for.

TEXT The text to search within.

Returns

GROUP The index of the capturing group; group 0 represents the portion of TEXT which matched the entire PAT-
TERN.

POSITION The 1-based position of the group within TEXT.

CONTENT The content of the matched group.

Examples

This example demonstrates how multiple groups are matched and returned by the function:

SELECT
T.GROUP,
T.POSITION,
T.CONTENT

FROM
TABLE(

PCRE_GROUPS(’(<([A-Z][A-Z0-9]*)[^>]*>)(.*?)(</\2>)’, ’BOLD!’)
) AS T

GROUP POSITION CONTENT
----- -------- -------------------------

0 1 BOLD!
1 1
2 2 B
3 4 BOLD!
4 9

Example demonstrating how unmatched groups are not returned, while groups matching the empty string are:

SELECT
T.GROUP,
T.POSITION,
T.CONTENT

FROM
TABLE(

PCRE_GROUPS(’(FOO)?(\s?)(BAR)?(\s?)(BAZ)?’, ’FOOBAR’)
) AS T

GROUP POSITION CONTENT
----- -------- -------------------------

0 1 FOOBAR
1 1 FOO
2 4
3 4 BAR
4 7

44 Chapter 1. Table of Contents

db2utils Documentation, Release 0.2

See Also

• SQL source code

• C source code

• PCRE_SEARCH scalar function

• PCRE_SUB scalar function

• PCRE_SPLIT table function

• PCRE library homepage

• Wikipedia PCRE article

PCRE_SEARCH scalar function

Searches for regular expression PATTERN within TEXT starting at 1-based START.

Prototypes

PCRE_SEARCH(PATTERN VARCHAR(1000), TEXT VARCHAR(4000), START INTEGER)
PCRE_SEARCH(PATTERN VARCHAR(1000), TEXT VARCHAR(4000))

RETURNS INTEGER

Description

PCRE searching function. Given a regular expression in PATTERN, and some text to search in TEXT, returns the
1-based position of the first match. START is an optional 1-based position from which to start the search (defaults to
1 if not specified). If no match is found, the function returns zero. If PATTERN, TEXT, or START is NULL, the
result is NULL.

Parameters

PATTERN The Perl-compatible Regular Expression (PCRE) to search for

TEXT The text to search within

START The 1-based position from which to start the search. Defaults to 1 if omitted.

Examples

Simple searches showing the return value is a 1-based position or 0 in the case of failure:

VALUES
(PCRE_SEARCH(’FOO’, ’FOOBAR’)),
(PCRE_SEARCH(’BAR’, ’FOOBAR’)),
(PCRE_SEARCH(’BAZ’, ’FOOBAR’))

1.7. Reference 45

https://github.com/waveform80/db2utils/blob/master/pcre.sql#L206
https://github.com/waveform80/db2utils/blob/master/pcre/pcre_udfs.c#L411
http://www.pcre.org/
http://en.wikipedia.org/wiki/PCRE

db2utils Documentation, Release 0.2

1

1
4
0

A search to check whether a value looks vaguely like an IP address; note that the octets are not checked for 0-255
range:

VALUES PCRE_SEARCH(’^\d{1,3}(\.\d{1,3}){3}$’, ’192.168.0.1’)

1

1

A search demonstrating use of back-references to check that a closing tag matches the opening tag:

VALUES PCRE_SEARCH(’<([A-Z][A-Z0-9]*)[^>]*>.*?</\1>’, ’BOLD!’)

1

1

Searches demonstrating negative look-aheads:

VALUES
(PCRE_SEARCH(’Q(?!U)’, ’QUACK’)),
(PCRE_SEARCH(’Q(?!U)’, ’QI’))

1

0
1

See Also

• SQL source code

• C source code

• PCRE_SUB scalar function

• PCRE_SPLIT table function

• PCRE_GROUPS table function

• PCRE library homepage

• Wikipedia PCRE article

PCRE_SPLIT table function

Searches for all occurrences of regular expression PATTERN in TEXT, returning a table of all matches and the text
between each match.

46 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/pcre.sql#L58
https://github.com/waveform80/db2utils/blob/master/pcre/pcre_udfs.c#L225
http://www.pcre.org/
http://en.wikipedia.org/wiki/PCRE

db2utils Documentation, Release 0.2

Prototypes

PCRE_SPLIT(PATTERN VARCHAR(1000), TEXT VARCHAR(4000))

RETURNS TABLE(
ELEMENT INTEGER,
SEPARATOR INTEGER,
POSITION INTEGER,
CONTENT VARCHAR(4000)

)

Description

PCRE string splitting function. Given a regular expression in PATTERN, and some text in TEXT, the function
searches for every occurence of PATTERN in TEXT and breaks TEXT into chunks based on those matches. Each
chunk is returned as a row in the result table which details whether or not the chunk was a result of a match, or text
between the match.

Parameters

PATTERN The Perl-compatible Regular Expression (PCRE) to search for.

TEXT The text to search within.

Returns

ELEMENT The 1-based index of the chunk. Note that there are usually two rows for each index, one where SEPA-
RATOR is zero and another where SEPARATOR is one. Therefore, one could consider the key of the result table
to be (ELEMENT, SEPARATOR)

SEPARATOR Contains 1 if the row represents a match for PATTERN, and 0 if the row represents text between
matches.

POSITION The 1-based position of CONTENT within the original TEXT parameter.

CONTENT The extract from TEXT.

Examples

An example demonstrating a simple split. Note that a row is still returned for the “missing” value, albeit with an empty
CONTENT value:

SELECT
T.ELEMENT,
T.SEPARATOR,
T.POSITION,
T.CONTENT

FROM
TABLE(

PCRE_SPLIT(’:’, ’A:B:C::E’)
) AS T

1.7. Reference 47

db2utils Documentation, Release 0.2

ELEMENT SEPARATOR POSITION CONTENT
------- --------- -------- -------------------

1 0 1 A
1 1 2 :
2 0 3 B
2 1 4 :
3 0 5 C
3 1 6 :
4 0 7
4 1 7 :
5 0 8 E

An example demonstrating a very rudimentary CSV parser. Note that to keep things simple, we actually treat the
separator pattern as the data here, filter out the interleaved commas and remove the quotes surrounding delimited
values:

SELECT
T.ELEMENT,
CASE WHEN LEFT(T.CONTENT, 1) = ’"’

THEN SUBSTR(T.CONTENT, 2, LENGTH(T.CONTENT) - 2)
ELSE T.CONTENT

END AS CONTENT
FROM

TABLE(
PCRE_SPLIT(’([^",][^,]*|"[^"]*")’, ’"Some",CSV,",data"’)

) AS T
WHERE

T.SEPARATOR = 1

ELEMENT CONTENT
------- -------------------

1 Some
2 CSV
3 ,data

See Also

• SQL source code

• C source code

• PCRE_SEARCH scalar function

• PCRE_SUB scalar function

• PCRE_GROUPS table function

• PCRE library homepage

• Wikipedia PCRE article

PCRE_SUB scalar function

Returns replacement pattern REPL with substitutions from matched groups of regular expression PATTERN in
TEXT starting from 1-based START.

48 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/pcre.sql#L292
https://github.com/waveform80/db2utils/blob/master/pcre/pcre_udfs.c#L510
http://www.pcre.org/
http://en.wikipedia.org/wiki/PCRE

db2utils Documentation, Release 0.2

Prototypes

PCRE_SUB(PATTERN VARCHAR(1000), REPL VARCHAR(4000), TEXT VARCHAR(4000), START INTEGER)
PCRE_SUB(PATTERN VARCHAR(1000), REPL VARCHAR(4000), TEXT VARCHAR(4000))

RETURNS VARCHAR(4000)

Description

PCRE substitution function. Given a regular expression in PATTERN, a substitution pattern in REPL, some text
to match in TEXT, and an optional 1-based START position for the search, returns REPL with backslash prefixed
group specifications replaced by the corresponding matched group, e.g. \0 refers to the group that matches the entire
PATTERN, \1 refers to the first capturing group in PATTERN. To include a literal backslash in REPL double it, i.e.
\\. Returns NULL if the PATTERN does not match TEXT.

Note that ordinary C-style backslash escapes are not interpreted by this function within REPL, i.e. \n will not be
replaced by a newline character. Use ordinary SQL hex-strings for this.

Parameters

PATTERN The Perl-Compatible Regular Expression (PCRE) to search for.

REPL The replacement pattern to return, after substitution of matched groups (indicated by back-slash prefixed num-
bers within this string).

TEXT The text to search within.

START The 1-based position from which to start the search. Defaults to 1 if omitted.

Examples

Simple searches demonstrating extraction of the matched portion of TEXT (if any):

VALUES
(PCRE_SUB(’FOO’, ’\0’, ’FOOBAR’)),
(PCRE_SUB(’FOO(BAR)?’, ’\0’, ’FOOBAR’)),
(PCRE_SUB(’BAZ’, ’\0’, ’FOOBAR’))

1
-------------------...
FOO
FOOBAR
-

A substitution demonstrating the extraction of an IP address from some text:

VALUES PCRE_SUB(’\b(\d{1,3}(\.\d{1,3}){3})\b’, ’\1’, ’IP address: 192.168.0.1’)

1
-----------------...
192.168.0.1

A substitution demonstrating the replacement of one HTML tag with another:

1.7. Reference 49

db2utils Documentation, Release 0.2

VALUES PCRE_SUB(’<([A-Z][A-Z0-9]*)[^>]*>(.*?)</\1>’, ’<I>\2</I>’, ’BOLD!’)

1
------------------...
<I>BOLD!</I>

A substitution demonstrating that look-aheads do not form part of the match:

VALUES PCRE_SUB(’Q(?!U)’, ’\0’, ’QI’)

1
---------------...
Q

See Also

• SQL source code

• C source code

• PCRE_SEARCH scalar function

• PCRE_SPLIT table function

• PCRE_GROUPS table function

• PCRE library homepage

• Wikipedia PCRE article

PRIOR_DAYOFWEEK scalar function

Returns the latest date earlier than ADATE, which is also a particular day of the week, ADOW (1=Sunday, 2=Monday,
6=Saturday, etc.)

Prototypes

PRIOR_DAYOFWEEK(ADATE DATE, ADOW INTEGER)
PRIOR_DAYOFWEEK(ADATE TIMESTAMP, ADOW INTEGER)
PRIOR_DAYOFWEEK(ADATE VARCHAR(26), ADOW INTEGER)
PRIOR_DAYOFWEEK(ADOW INTEGER)

RETURNS DATE

Description

Returns the specified day of the week prior to the given date. Days of the week are specified in the same fashion as the
built-in DAYOFWEEK function (i.e. 1=Sunday, 2=Monday, ... 7=Saturday). If ADATE is omitted the current date is
used.

50 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/pcre.sql#L129
https://github.com/waveform80/db2utils/blob/master/pcre/pcre_udfs.c#L280
http://www.pcre.org/
http://en.wikipedia.org/wiki/PCRE

db2utils Documentation, Release 0.2

Parameters

ADATE The date before which to return a specific day of the week. If this parameter is omitted the CURRENT DATE
special register is used.

ADOW The day of the week to find specified as an integer where 1 represents Sunday, 2 is Monday, and so on.

Examples

Find the Monday before the start of 2010:

VALUES VARCHAR(PRIOR_DAYOFWEEK(’2010-01-01’, 2), ISO);

1

2009-12-28

Find the last Friday in January, 2010:

VALUES VARCHAR(PRIOR_DAYOFWEEK(MONTHEND(2010, 1), 6), ISO);

1

2010-01-29

See Also

• Source code

• NEXT_DAYOFWEEK scalar function

QUARTER_CLAIM scalar function

Returns the quarter of the year that ADATE exists within, according to the CLAIM calendar.

Prototypes

QUARTER_CLAIM(ADATE DATE)
QUARTER_CLAIM(ADATE TIMESTAMP)
QUARTER_CLAIM(ADATE VARCHAR(26))

RETURNS SMALLINT

Description

Returns the quarter of the year of ADATE, according to the CLAIM calendar. ADATE can be expressed as a DATE
value, a TIMESTAMP, or a VARCHAR containing a valid string representation of a date or timestamp. If ADATE is
NULL, the result is NULL. Otherwise, the result is a SMALLINT between 1 and 4.

1.7. Reference 51

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L53

db2utils Documentation, Release 0.2

Parameters

ADATE The date to calculate the quarter of, according to the CLAIM calendar.

Examples

Calculate the CLAIM quarter for the 1st of June, 2010:

VALUES QUARTER_CLAIM(DATE(2010, 6, 1));

1

2

Calculate the CLAIM quarter for the 31st of December, 2010:

VALUES QUARTER_CLAIM(’2010-12-31’);

1

1

See Also

• Source code

• QUARTER (built-in function)

• DAY_CLAIM

• WEEK_CLAIM scalar function

• MONTH_CLAIM scalar function

• YEAR_CLAIM scalar function

QUARTEREND scalar function

Returns the last day of the quarter that ADATE exists within, or the last day of the quarter AQUARTER in the year
AYEAR.

Prototypes

QUARTEREND(AYEAR INTEGER, AQUARTER INTEGER)
QUARTEREND(ADATE DATE)
QUARTEREND(ADATE TIMESTAMP)
QUARTEREND(ADATE VARCHAR(26))

RETURNS DATE

Description

Returns a DATE representing the last day of AQUARTER in AYEAR, or the last day of the quarter of ADATE
depending on the variant of the function that is called.

52 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L3059
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000837.html

db2utils Documentation, Release 0.2

Parameters

AYEAR If provided, the year of AQUARTER for which to return the ending date.

AQUARTER If provided, the quarter for which to return to the ending date.

ADATE If provided the date in the quarter for which to return the ending date. Either AYEAR and AQUARTER, or
ADATE must be specified.

Examples

Calculate the ending date of the second quarter in 2010:

VALUES QUARTEREND(2010, 2);

1

2010-06-30

Calculate the end date of the quarter containing the first of February, 2010:

VALUES QUARTEREND(’2010-02-01’);

1

2010-03-31

See Also

• Source code

• QUARTERSTART scalar function

• QUARTER (built-in function)

QUARTERSTART scalar function

Returns the first day of the quarter that ADATE exists within, or the first day of the quarter AQUARTER in the year
AYEAR.

Prototypes

QUARTERSTART(AYEAR INTEGER, AQUARTER INTEGER)
QUARTERSTART(ADATE DATE)
QUARTERSTART(ADATE TIMESTAMP)
QUARTERSTART(ADATE VARCHAR(26))

RETURNS DATE

Description

Returns a DATE representing the first day of AQUARTER in AYEAR, or the first day of the quarter of ADATE
depending on the variant of the function that is called.

1.7. Reference 53

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L753
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000837.html

db2utils Documentation, Release 0.2

Parameters

AYEAR If provided, the year of AQUARTER for which to return the starting date.

AQUARTER If provided, the quarter for which to return to the starting date.

ADATE If provided the date in the quarter for which to return the starting date. Either AYEAR and AQUARTER, or
ADATE must be specified.

Examples

Calculate the starting date of the second quarter in 2010:

VALUES QUARTERSTART(2010, 2);

1

2010-04-01

Calculate the start date of the quarter containing the first of February, 2010:

VALUES QUARTERSTART(’2010-02-01’);

1

2010-01-01

See Also

• Source code

• QUARTEREND scalar function

• QUARTER (built-in function)

QUARTERWEEK scalar function

Returns the week of the quarter that ADATE exists within (weeks start on a Sunday, result will be in the range 1-14).

Prototypes

QUARTERWEEK(ADATE DATE)
QUARTERWEEK(ADATE TIMESTAMP)
QUARTERWEEK(ADATE VARCHAR(26))

RETURNS SMALLINT

Description

Returns the week of the quarter of ADATE, where weeks start on a Sunday. The result will be in the range 1-14 as
partial weeks are permitted. For example, if the first day of a quarter is a Saturday, it will be counted as week 1, which
lasts one day. The next day, Sunday, will start week 2.

54 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L689
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000837.html

db2utils Documentation, Release 0.2

Parameters

ADATE The date to calculate the week of the quarter for.

Examples

Calculate the week of the quarter for 31st of January, 2010:

VALUES QUARTERWEEK(DATE(2010, 1, 31));

1

6

Show the number of weeks in all quarters in the years 2007-2010:

SELECT YEAR(D) AS YEAR, QUARTER(D) AS QUARTER, QUARTERWEEK(QUARTEREND(D)) AS WEEKS
FROM TABLE(DATE_RANGE(’2007-01-01’, ’2010-12-31’, ’300’));

YEAR QUARTER WEEKS
----------- ----------- ------

2007 1 13
2007 2 13
2007 3 14
2007 4 14
2008 1 14
2008 2 14
2008 3 14
2008 4 14
2009 1 14
2009 2 14
2009 3 14
2009 4 14
2010 1 14
2010 2 14
2010 3 14
2010 4 14

See Also

• Source code

• QUARTERWEEK_ISO scalar function

QUARTERWEEK_ISO scalar function

Returns the week of the quarter that ADATE exists within (weeks start on a Monday, result will be in the range 1-6).

Prototypes

QUARTERWEEK_ISO(ADATE DATE)
QUARTERWEEK_ISO(ADATE TIMESTAMP)
QUARTERWEEK_ISO(ADATE VARCHAR(26))

1.7. Reference 55

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L822

db2utils Documentation, Release 0.2

RETURNS SMALLINT

Description

Returns the week of the quarter of ADATE, where weeks start on a Monday. The result will be in the range 1-14 as
partial weeks are permitted. For example, if the first day of a month is a Sunday, it will be counted as week 1, which
lasts one day. The next day, Monday, will start week 2.

Parameters

ADATE The date to calculate the week of the quarter for.

Examples

Calculate the week of the quarter for 31st of January, 2010:

VALUES QUARTERWEEK_ISO(DATE(2010, 1, 31));

1

5

Show the number of weeks in all quarters in the years 2007-2010:

SELECT YEAR(D) AS YEAR, QUARTER(D) AS QUARTER, QUARTERWEEK_ISO(QUARTEREND(D)) AS WEEKS
FROM TABLE(DATE_RANGE(’2007-01-01’, ’2010-12-31’, ’300’));

YEAR QUARTER WEEKS
----------- ----------- ------

2007 1 13
2007 2 14
2007 3 14
2007 4 14
2008 1 14
2008 2 14
2008 3 14
2008 4 14
2009 1 14
2009 2 14
2009 3 14
2009 4 14
2010 1 14
2010 2 14
2010 3 14
2010 4 14

See Also

• Source code

• QUARTERWEEK scalar function

56 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L871

db2utils Documentation, Release 0.2

QUOTE_IDENTIFIER scalar function

If AIDENT is an identifier which requires quoting, returns AIDENT surrounded by double quotes with all contained
double quotes doubled. Useful when constructing SQL for EXECUTE IMMEDIATE within a procedure.

Prototypes

QUOTE_IDENTIFIER(AIDENT(VARCHAR(128))

RETURNS VARCHAR(258)

Description

Returns AIDENT surrounded by double quotes if AIDENT contains any characters which cannot appear in an iden-
tifier, as defined by the DB2 SQL dialect. Specifically this function is intended for correctly quoting SQL identifiers
in generated SQL. Hence if AIDENT contains any lower-case, whitespace or symbolic characters, or begins with a
numeral or underscore, it is returned quoted. If AIDENT contains no such characters it is returned verbatim.

Parameters

AIDENT The identifier to quote (if necessary).

Examples

Quote a simple identifier:

VALUES QUOTE_IDENTIFIER(’MY_TABLE’)

1
----------...
MY_TABLE

Quote an identifier containing characters that require quoting:

VALUES QUOTE_IDENTIFIER(’MyTable’)

1
-----------...
"MyTable"

Quote an identifier containing quotation marks:

VALUES QUOTE_IDENTIFIER(’My "Table"’)

1
-----------------...
"My ""Table"""

See Also

• Source code

1.7. Reference 57

https://github.com/waveform80/db2utils/blob/master/sql.sql#L100

db2utils Documentation, Release 0.2

• QUOTE_STRING scalar function

QUOTE_STRING scalar function

Returns ASTRING surrounded by single quotes with all necessary escaping. Useful when constructing SQL for
EXECUTE IMMEDIATE within a procedure.

Prototypes

QUOTE_STRING(ASTRING VARCHAR(4000))

RETURNS VARCHAR(4000)

Description

Returns ASTRING surrounded by single quotes and performs any necessary escaping within the string to make it valid
SQL. For example, single quotes within ASTRING are doubled, and control characters like CR or LF are returned as
concatenated hex-strings.

Parameters

ASTRING The string to enclose in single-quotation marks.

Examples

Quote a simple string:

VALUES QUOTE_STRING(’A string’)

1
---------------...
’A string’

Quote a string containing an apostrophe (the delimiter for SQL strings):

VALUES QUOTE_STRING(’Frank’’s string’)

1
--------------------...
’Frank’’s string’

Quote a string containing a control character (in this case a line-feed):

VALUES QUOTE_STRING(’A multi’ || X’0A’ || ’line string’)

1
------------------------------------...
’A multi’ || X’0A’ || ’line string’

58 Chapter 1. Table of Contents

db2utils Documentation, Release 0.2

See Also

• Source code

• QUOTE_IDENTIFIER scalar function

SECONDEND scalar function

Returns a TIMESTAMP at the end of AHOUR:AMINUTE:ASECOND on the date AYEAR, AMONTH, ADAY,
or at the end of the second of ATIMESTAMP.

Prototypes

SECONDEND(AYEAR INTEGER, AMONTH INTEGER, ADAY INTEGER, AHOUR INTEGER, AMINUTE INTEGER, ASECOND INTEGER)
SECONDEND(ATIMESTAMP TIMESTAMP)
SECONDEND(ATIMESTAMP VARCHAR(26))

RETURNS TIMESTAMP

Description

Returns a TIMESTAMP value representing the last microsecond of ASECOND in AMINUTE in AHOUR on the
date given by AYEAR, AMONTH, and ADAY, or of the timestamp given by ATIMESTAMP depending on the
variant of the function that is called.

Parameters

AYEAR If provided, the year component of the resulting timestamp.

AMONTH If provided, the month component of the resulting timestamp.

ADAY If provided, the day component of the resulting timestamp.

AHOUR If provided, the hour component of the resulting timestamp.

AMINUTE If provided, the minute component of the resulting timestamp.

ASECOND If provided, the second component of the resulting timestamp.

ATIMESTAMP If provided, the timestamp from which to derive the end of the second. Either AYEAR, AMONTH,
ADAY, AHOUR, AMINUTE, and ASECOND, or ATIMESTAMP must be provided.

Examples

Round the specified timestamp up to one microsecond before the next second:

VALUES SECONDEND(’2010-01-23 04:56:12.123456’);

1

2010-01-23-04.56.12.999999

Generate a timestamp at the end of a second with the specified fields:

1.7. Reference 59

https://github.com/waveform80/db2utils/blob/master/sql.sql#L42

db2utils Documentation, Release 0.2

VALUES SECONDEND(2010, 2, 14, 9, 30, 44);

1

2010-02-14-09.30.44.999999

See Also

• Source code

• SECONDSTART scalar function

• SECOND (built-in function)

SECONDS scalar function

Returns an integer representation of the specified TIMESTAMP. The inverse of this function is TIMESTAMP scalar
function.

Prototypes

SECONDS(ATIMESTAMP TIMESTAMP)
SECONDS(ATIMESTAMP DATE)
SECONDS(ATIMESTAMP VARCHAR(26))

RETURNS BIGINT

Description

Returns an integer representation of a TIMESTAMP. This function is a combination of the built-in DAYS and MID-
NIGHT_SECONDS functions. The result is a BIGINT (64-bit integer value) representing the number of seconds since
one day before 0001-01-01 at 00:00:00. The one day offset is due to the operation of the DAYS function.

Parameters

ATIMESTAMP The timestamp to convert to an integer representation. If a DATE is provided, then it will be treated
as a TIMESTAMP with the equivalent date portion and a time portion of midnight.

Examples

Return an integer representation of the first instant of the year 2010:

VALUES SECONDS(YEARSTART(2010));

1

63397987200

Return the number of seconds in the year 2010:

60 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L1828
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000847.html

db2utils Documentation, Release 0.2

VALUES SECONDS(YEARSTART(2011)) - SECONDS(YEARSTART(2010));

1

31536000

See Also

• Source code

• TIMESTAMP scalar function

• DAYS (built-in function)

• MIDNIGHT_SECONDS (built-in function)

SECONDSTART scalar function

Returns a TIMESTAMP at the start of AHOUR:AMINUTE:ASECOND on the date AYEAR, AMONTH, ADAY,
or at the start of the second of ATIMESTAMP.

Prototypes

SECONDSTART(AYEAR INTEGER, AMONTH INTEGER, ADAY INTEGER, AHOUR INTEGER, AMINUTE INTEGER, ASECOND INTEGER)
SECONDSTART(ATIMESTAMP TIMESTAMP)
SECONDSTART(ATIMESTAMP VARCHAR(26))

RETURNS TIMESTAMP

Description

Returns a TIMESTAMP value representing the first microsecond of ASECOND in AMINUTE in AHOUR on the
date given by AYEAR, AMONTH, and ADAY, or of the timestamp given by ATIMESTAMP depending on the
variant of the function that is called.

Parameters

AYEAR If provided, the year component of the resulting timestamp.

AMONTH If provided, the month component of the resulting timestamp.

ADAY If provided, the day component of the resulting timestamp.

AHOUR If provided, the hour component of the resulting timestamp.

AMINUTE If provided, the minute component of the resulting timestamp.

ASECOND If provided, the second component of the resulting timestamp.

ATIMESTAMP If provided, the timestamp from which to derive the start of the second. Either AYEAR, AMONTH,
ADAY, AHOUR, AMINUTE, and ASECOND, or ATIMESTAMP must be provided.

1.7. Reference 61

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L186
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000789.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000827.html

db2utils Documentation, Release 0.2

Examples

Truncate the specified timestamp to the nearest second:

VALUES SECONDSTART(’2010-01-23 04:56:12.123456’);

1

2010-01-23-04.56.12.000000

Generate a timestamp at the start of a second with the specified fields:

VALUES SECONDSTART(2010, 2, 14, 9, 30, 44);

1

2010-02-14-09.30.44.000000

See Also

• Source code

• SECONDEND scalar function

• SECOND (built-in function)

TABLE_COLUMNS scalar function

Returns a string containing the comma-separated list of columns of the specified table in the order they are defined

Prototypes

TABLE_COLUMNS(ASCHEMA VARCHAR(128), ATABLE VARCHAR(128), INCLUDE_GENERATED VARCHAR(1), INCLUDE_IDENTITY VARCHAR(1))
TABLE_COLUMNS(ATABLE VARCHAR(128), INCLUDE_GENERATED VARCHAR(1), INCLUDE_IDENTITY VARCHAR(1))
TABLE_COLUMNS(ATABLE VARCHAR(128))

Description

This function returns a string containing a comma-separated list of the columns in the specified table in the order that
they exist in the table.

If ASCHEMA is omitted it defaults to the value of the CURRENT SCHEMA special register. If the optional
INCLUDE_GENERATED parameter is ’Y’ (the default), GENERATED ALWAYS columns will be included,
otherwise they are excluded. GENERATED BY DEFAULT columns are always included. If the optional IN-
CLUDE_IDENTITY parameter is ’Y’ (the default), IDENTITY columns will be included, otherwise they are ex-
cluded.

Parameters

ASCHEMA If provided, the schema containing the table for which to return a column list. Defaults to the value of
the CURRENT SCHEMA special register if omitted.

ATABLE The table for which to return a column list.

62 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L1776
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000847.html

db2utils Documentation, Release 0.2

INCLUDE_GENERATED If provided, specifies whether to include GENERATED ALWAYS columns in the result.
Defaults to ’Y’ if omitted.

INCLUDE_IDENTITY If provided, specifies whether to include IDENTITY columns in the result. Defaults to ’Y’
if omitted.

Examples

Return a comma-separated list of the columns in the SYSIBM.SYSTABLES table:

VALUES TABLE_COLUMNS(’SYSIBM’, ’SYSTABLES’, ’Y’, ’Y’);

1
--
NAME,CREATOR,TYPE,CTIME,REMARKS,PACKED_DESC,VIEW_DESC,COLCOUNT,FID,TID,CARD,NPAGES,FPAGES,OVERFLOW,PARENTS,CHILDREN,SELFREFS,KEYCOLUMNS,KEYOBID,REL_DESC,BASE_NAME,BASE_SCHEMA,TBSPACE,INDEX_TBSPACE,LONG_TBSPACE,KEYUNIQUE,CHECKCOUNT,CHECK_DESC,STATS_TIME,DEFINER,TRIG_DESC,DATA_CAPTURE,STATUS,CONST_CHECKED,PMAP_ID,ENCODING_SCHEME,PCTFREE,ROWTYPESCHEMA,ROWTYPENAME,APPEND_MODE,PARTITION_MODE,REFRESH,REFRESH_TIME,LOCKSIZE,VOLATILE,REMOTE_DESC,CLUSTERED,AST_DESC,DROPRULE,LOGINDEXBUILD,PROPERTY,STATISTICS_PROFILE,COMPRESSION,ACCESS_MODE,ACTIVE_BLOCKS,MAXFREESPACESEARCH,AVGCOMPRESSEDROWSIZE,AVGROWCOMPRESSIONRATIO,AVGROWSIZE,PCTROWSCOMPRESSED,CODEPAGE,PCTPAGESSAVED,LAST_REGEN_TIME,SECPOLICYID,PROTECTIONGRANULARITY,INVALIDATE_TIME,DEFINERTYPE,ALTER_TIME,AUDITPOLICYID,COLLATIONID,COLLATIONID_ORDERBY,ONCOMMIT,ONROLLBACK,LOGGED,LASTUSED

See the implementation of EXPORT_TABLE scalar function for an example of the usage of this function within a
stored procedure.

See Also

• Source code

• EXPORT_TABLE scalar function

• LOAD_TABLE scalar function

• SYSCAT.COLUMNS (built-in catalogue view)

TIME scalar function

Constructs a TIME from the specified hours, minutes and seconds, or seconds from midnight.

Prototypes

TIME(AHOUR INTEGER, AMINUTE INTEGER, ASECOND INTEGER)
TIME(ASECONDS BIGINT)
TIME(ASECONDS INTEGER)

RETURNS TIME

Description

Returns a TIME with the components specified by AHOUR, AMINUTE and ASECOND in the first case. In the
second case, returns a TIME ASECONDS after midnight. If ASECONDS represents a period longer than a day, the
value used is ASECONDS mod 86400 (the “date” portion of the seconds value is removed before calculation). This
function is essentially the reverse of the MIDNIGHT_SECONDS function.

1.7. Reference 63

https://github.com/waveform80/db2utils/blob/master/export_load.sql#L46
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001038.html

db2utils Documentation, Release 0.2

Parameters

AHOUR If provided, specifies the hour component of the resulting TIME.

AMINUTE If provided, specifies the minute component of the resulting TIME.

ASECONDS If AHOUR and AMINUTE are provided, specifies the second component of the resulting TIME.
Otherwise, specifies the number of seconds after minute from which the hour and minute components will be
derived.

Examples

Construct a time representing midnight:

VALUES TIME(0);

1

00:00:00

Construct a time representing half past noon:

VALUES TIME(12, 30, 0);

1

12:30:00

See Also

• Source code

• DATE scalar function

• TIME (built-in function)

• MIDNIGHT_SECONDS (built-in function)

TIMESTAMP scalar function

Constructs a TIMESTAMP from the specified seconds after the epoch. This is the inverse of SECONDS scalar
function.

Prototypes

TIMESTAMP(ASECONDS BIGINT)
TIMESTAMP(AYEAR INTEGER, AMONTH INTEGER, ADAY INTEGER, AHOUR INTEGER, AMINUTE INTEGER, ASECOND INTEGER, AMICROSECOND INTEGER)

RETURNS TIMESTAMP

64 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L280
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000858.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000827.html

db2utils Documentation, Release 0.2

Description

The first version of this function returns a TIMESTAMP ASECONDS seconds after 0000-12-31 00:00:00. This
function is essentially the reverse of SECONDS scalar function. The ASECONDS value MUST be greater than
86400 (it must include a “date” portion) otherwise the returned value has an invalid year of 0000 and an error will
occur.

The second version of this function simply constructs a timestamp from the given integer fields.

Parameters

ASECONDS The number of seconds after the epoch (0000-12-31 00:00:00) which the resulting TIMESTAMP will
represent.

AYEAR The year for the resulting timestamp.

AMONTH The month for the resulting timestamp (1-12).

ADAY The day for the resulting timestamp (1-31).

AHOUR The hours for the resulting timestamp (0-23).

AMINUTE The minutes for the resulting timestamp (0-59).

ASECOND The seconds for the resulting timestamp (0-59).

AMICROSECOND The microseconds for the resulting timestamp (0-999999).

Examples

Construct a TIMESTAMP representing the epoch (note that 0 cannot be used due to the offset mentioned in SECONDS
scalar function:

VALUES TIMESTAMP(86400);

1

0001-01-01-00.00.00.000000

Calculate a TIMESTAMP 10 seconds before midnight on new year’s day 2000 (admittedly this would be more simply
accomplished with TIMESTAMP(YEARSTART(2000)) - 10 SECONDS, but for the sake of demonstration we’re
using a round-trip of TIMESTAMP and SECONDS scalar function here):

VALUES TIMESTAMP(SECONDS(YEARSTART(2000)) - 10);

1

1999-12-31-23.59.50.000000

Construct a timestamp from a set of literal values:

VALUES TIMESTAMP(2000, 1, 1, 0, 0, 0, 0);

1

2000-01-01-00.00.00.000000

1.7. Reference 65

db2utils Documentation, Release 0.2

See Also

• Source code

• SECONDS scalar function

• TIMESTAMP (built-in function)

TS_FORMAT scalar function

A version of C’s strftime() for DB2. Formats ATIMESTAMP according to the AFORMAT string, containing %-
prefixed templates which will be replaced with elements of ATIMESTAMP.

Prototypes

TS_FORMAT(AFORMAT VARCHAR(100), ATIMESTAMP TIMESTAMP)
TS_FORMAT(AFORMAT VARCHAR(100), ATIMESTAMP DATE)
TS_FORMAT(AFORMAT VARCHAR(100), ATIMESTAMP TIME)
TS_FORMAT(AFORMAT VARCHAR(100), ATIMESTAMP VARCHAR(26))

RETURNS VARCHAR(100)

Description

TS_FORMAT is a reimplementation of C’s strftime() function which converts a TIMESTAMP (or DATE, TIME, or
VARCHAR(26) containing a string representation of a TIMESTAMP) into a VARCHAR according to a format string
containing %-prefixed templates which will be replaced with components derived from the provided TIMESTAMP.
The templates which can be used within the format string are as follows:

Template Meaning
%a Locale’s abbreviated weekday name
%A Locale’s full weekday name
%b Locale’s abbreviated month name
%B Locale’s full month name
%c Locale’s appropriate date and time representation
%C The century number (year/100), 00-99
%d Day of the month as a decimal number, 01-31
%D Equivalent to ’%m/%d/%y’ (US format)
%e Like %d, but with leading space instead of zero
%F Equivalent to ’%Y-%m-%d’ (ISO8601 format)
%G ISO8601 year with century as a decimal number
%g ISO8601 year without century as a decimal number
%h Half of the year as a decimal number, 1-2
%H Hour (24-hr clock) as a decimal number, 00-23
%I Hour (12-hr clock) as a decimal number, 01-12
%j Day of the year as a decimal number, 001-366
%k Like %H with leading space instead of zero
%l Like %I with leading space instead of zero
%m Month as a decimal number, 01-12
%M Minute as a decimal number, 00-59
%n Newline character (X’0A’)

Continued on next page

66 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L347
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000859.html

db2utils Documentation, Release 0.2

Table 1.1 – continued from previous page
Template Meaning
%p Locale’s equivalent of either AM or PM
%P Like ’%p’ but lowercase
%q Quarter of the year as decimal number, 1-4
%S Second as a decimal number, 00-61
%t A tab character (X’09’)
%T Equivalent to ’%H:%M:%S’
%u Weekday as a decimal number, 1 (Monday) - 7 (Sunday)
%U Week number of the year (Sunday as the first day of the week) as a decimal number, 01-54
%V ISO8601 Week number of the year (Monday as the first day of the week) as a decimal number, 01-53
%w Weekday as a decimal number, 1 (Sunday) - 7 (Monday)
%W Equivalent to ’%V’
%x Locale’s appropriate date representation
%X Locale’s appropriate time representation
%y Year without century as a decimal number, 00-99
%Y Year with century as a decimal number
%Z Time zone offset (no characters if no time zone exists)
%% A literal % character

Note: This routine was primarily included in response to the rather useless TIMESTAMP_FORMAT included in early
versions (pre-fixpack 4?) of DB2 9.5, which only permitted specification of a single ISO8601-ish format string. Later
fixpacks and DB2 9.7 now include a fairly decent TIMESTAMP_FORMAT implementation which is considerably
more efficient than this one, although still somewhat limited in the range of available templates.

Parameters

AFORMAT A string containing the templates to substitute with the fields of ATIMESTAMP.

ATIMESTAMP A TIMESTAMP, DATE, TIME, or VARCHAR(26) value (containing a string representation of a
timestamp) which will be used to calculate the substitutions for the templates in AFORMAT.

Examples

Format the 7th of August, 2010 in US style:

VALUES TS_FORMAT(’%m/%d/%Y’, ’2010-08-07’);

1
--
08/07/2010

Construct a sentence describing the week of a given date:

VALUES TS_FORMAT(’Week %U of %B, %Y’, ’2010-01-01’);

1
--
Week 01 of January, 2010

1.7. Reference 67

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0007107.html

db2utils Documentation, Release 0.2

See Also

• Source code

• TIMESTAMP_FORMAT (built-in function)

WEEK_CLAIM scalar function

Returns the week of the year that ADATE exists within, according to the CLAIM calendar.

Prototypes

WEEK_CLAIM(ADATE DATE)
WEEK_CLAIM(ADATE TIMESTAMP)
WEEK_CLAIM(ADATE VARCHAR(26))

RETURNS SMALLINT

Description

Returns the week of the year of ADATE, according to the CLAIM calendar. ADATE can be expressed as a DATE
value, a TIMESTAMP, or a VARCHAR containing a valid string representation of a date or timestamp. If ADATE is
NULL, the result is NULL. Otherwise, the result is a SMALLINT between 1 and 53.

Parameters

ADATE The date to calculate the week of year for, according to the CLAIM calendar.

Examples

Calculate the CLAIM week for the 2nd of January, 2010:

VALUES WEEK_CLAIM(DATE(2010, 1, 2));

1

2

Calculate the CLAIM week for the 31st of December, 2010:

VALUES WEEK_CLAIM(’2010-12-31’);

1

1

See Also

• Source code

• WEEK (built-in function)

68 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L2178
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0007107.html
https://github.com/waveform80/db2utils/blob/master/date_time.sql#L3007
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000871.html

db2utils Documentation, Release 0.2

• DAY_CLAIM

• MONTH_CLAIM scalar function

• QUARTER_CLAIM scalar function

• YEAR_CLAIM scalar function

UNICODE_REPLACE_BAD function

Returns SOURCE with characters that are invalid in UTF-8 encoding replaced with the string REPL.

Prototypes

UNICODE_REPLACE_BAD(SOURCE VARCHAR(4000), REPL VARCHAR(100))
UNICODE_REPLACE_BAD(SOURCE VARCHAR(4000))

RETURNS VARCHAR(4000)

Description

Under certain circumstances, DB2 will permit text containing characters invalid in the UTF-8 encoding scheme to be
inserted into a column intended to contain UTF-8 encoded data. While this doesn’t cause a problem for DB2 queries,
it can cause issues for down-stream appliations. This function provides a means of stripping or replacing such invalid
characters.

Parameters

SOURCE The string to search for characters invalid in the UTF-8 encoding scheme.

REPL The string to replace any invalid sequences with. Defaults to the empty string if omitted.

Examples

Replacement of truncated UTF-8 characters:

VALUES
(UNICODE_REPLACE_BAD(’FOO’ || X’C2’, ’BAR’))

1
--------------------....
FOOBAR

Replacement of invalid characters in the middle of a string:

VALUES
(UNICODE_REPLACE_BAD(’FOO’ || X’80’ || BAR))

1
--------------------....
FOOBAR

1.7. Reference 69

db2utils Documentation, Release 0.2

See Also

• SQL source code

• C source code

• Wikipedia UTF-8 article

WEEKEND scalar function

Returns the last day (always a Saturday) of the week that ADATE exists within, or the last day of the week AWEEK
in the year AYEAR.

Prototypes

WEEKEND(AYEAR INTEGER, AWEEK INTEGER)
WEEKEND(ADATE DATE)
WEEKEND(ADATE TIMESTAMP)
WEEKEND(ADATE VARCHAR(26))

RETURNS DATE

Description

Returns a DATE representing the last day of AWEEK in AYEAR, or the last day of the week of ADATE (always a
Saturday) depending on the variant of the function that is called.

Parameters

AYEAR If provided, the year of AWEEK for which to return the ending date.

AWEEK If provided, the week for which to return to the ending date.

ADATE If provided the date in the week for which to return the ending date. Either AYEAR and AWEEK, or
ADATE must be specified.

Examples

Calculate the ending date of the last week in 2010:

VALUES WEEKEND(2010, WEEKSINYEAR(2010));

1

2011-01-01

Calculate the end of the week for the 28th of January, 2009:

VALUES WEEKEND(’2009-01-28’);

1

2009-01-31

70 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/unicode.sql#L51
https://github.com/waveform80/db2utils/blob/master/unicode/unicode_udfs.c#L119
http://en.wikipedia.org/wiki/UTF-8

db2utils Documentation, Release 0.2

See Also

• Source code

• WEEKSTART scalar function

• WEEKEND_ISO scalar function

• WEEK (built-in function)

WEEKEND_ISO scalar function

Returns the last day (always a Sunday) of the week that ADATE exists within, or the last day of the week AWEEK in
the year AYEAR according to the ISO8601 standard.

Prototypes

WEEKEND_ISO(AYEAR INTEGER, AWEEK INTEGER)
WEEKEND_ISO(ADATE DATE)
WEEKEND_ISO(ADATE TIMESTAMP)
WEEKEND_ISO(ADATE VARCHAR(26))

RETURNS DATE

Description

Returns a DATE representing the last day of AWEEK in AYEAR according to the ISO8601 standard, or the last day
of the week of ADATE (always a Sunday) depending on the variant of the function that is called.

Parameters

AYEAR If provided, the year of AWEEK for which to return the ending date.

AWEEK If provided, the week for which to return to the ending date.

ADATE If provided the date in the week for which to return the ending date. Either AYEAR and AWEEK, or
ADATE must be specified.

Examples

Calculate the ending date of the last week in 2010:

VALUES WEEKEND_ISO(2010, WEEKSINYEAR_ISO(2010));

1

2011-01-02

Calculate the end of the week for the 28th of January, 2009:

VALUES WEEKEND_ISO(’2009-01-28’);

1.7. Reference 71

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L1115
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000871.html

db2utils Documentation, Release 0.2

1

2009-02-01

See Also

• Source code

• WEEKSTART_ISO scalar function

• WEEKEND scalar function

• WEEK_ISO (built-in function)

WEEKSINMONTH scalar function

Returns the number of weeks within the month that ADATE exists within, or the number of weeks in AMONTH in
AYEAR.

Prototypes

WEEKSINMONTH(AYEAR INTEGER, AMONTH INTEGER)
WEEKSINMONTH(ADATE DATE)
WEEKSINMONTH(ADATE TIMESTAMP)
WEEKSINMONTH(ADATE VARCHAR(26))

RETURNS SMALLINT

Description

Returns the number of weeks in AMONTH in AYEAR (weeks start on a Sunday, and partial weeks are permitted at
the start and end of the month), or the number of weeks in the month that ADATE exists within depending on the
variant of the function that is called.

Parameters

AYEAR If provided, the year containing AMONTH for which to calculate the number of weeks.

AMONTH If provided, the month within AYEAR for which to calculate the number of weeks.

ADATE If provided, the date within the month for which to calculate the number of weeks. Either AYEAR and
AMONTH, or ADATE must be provided.

Examples

Calculate the number of weeks in January 2010:

VALUES WEEKSINMONTH(2010, 1);

1

6

72 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L1247
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0005481.html

db2utils Documentation, Release 0.2

Calculate the number of weeks in the months of 2010:

SELECT MONTH(D) AS MONTH, WEEKSINMONTH(D) AS WEEKS
FROM TABLE(DATE_RANGE(’2010-01-01’, ’2010-12-01’, 100));

MONTH WEEKS
----------- ------

1 6
2 5
3 5
4 5
5 6
6 5
7 5
8 5
9 5

10 6
11 5
12 5

See Also

• Source code

• WEEKSINMONTH_ISO scalar function

• MONTH (built-in function)

• WEEK (built-in function)

WEEKSINMONTH_ISO scalar function

Returns the number of weeks within the month that ADATE exists within, or the number of weeks in AMONTH in
AYEAR.

Prototypes

WEEKSINMONTH_ISO(AYEAR INTEGER, AMONTH INTEGER)
WEEKSINMONTH_ISO(ADATE DATE)
WEEKSINMONTH_ISO(ADATE TIMESTAMP)
WEEKSINMONTH_ISO(ADATE VARCHAR(26))

RETURNS SMALLINT

Description

Returns the number of weeks in AMONTH in AYEAR (weeks start on a Monday, and partial weeks are permitted
at the start and end of the month), or the number of weeks in the month that ADATE exists within depending on the
variant of the function that is called.

Note: As far as I’m aware, ISO8601 doesn’t say anything about weeks within a month, hence why this function
differs from WEEKSINYEAR_ISO scalar function which does not permit partial weeks at the start and end of a year.
This function simply mirrors the functionality of WEEKSINMONTH scalar function but with a definition of weeks
that start on a Monday instead of Sunday.

1.7. Reference 73

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L1440
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000830.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000871.html

db2utils Documentation, Release 0.2

Parameters

AYEAR If provided, the year containing AMONTH for which to calculate the number of weeks.

AMONTH If provided, the month within AYEAR for which to calculate the number of weeks.

ADATE If provided, the date within the month for which to calculate the number of weeks. Either AYEAR and
AMONTH, or ADATE must be provided.

Examples

Calculate the number of weeks in January 2010:

VALUES WEEKSINMONTH_ISO(2010, 1);

1

5

Calculate the number of weeks in the months of 2010:

SELECT MONTH(D) AS MONTH, WEEKSINMONTH_ISO(D) AS WEEKS
FROM TABLE(DATE_RANGE(’2010-01-01’, ’2010-12-01’, 100));

MONTH WEEKS
----------- ------

1 5
2 4
3 5
4 5
5 6
6 5
7 5
8 6
9 5

10 5
11 5
12 5

See Also

• Source code

• WEEKSINMONTH scalar function

• MONTH (built-in function)

• WEEK_ISO (built-in function)

WEEKSINYEAR scalar function

Returns the number of weeks within the year that ADATE exists within, or the number of weeks in AYEAR.

74 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L1504
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000830.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0005481.html

db2utils Documentation, Release 0.2

Prototypes

WEEKSINYEAR(AYEAR INTEGER)
WEEKSINYEAR(ADATE DATE)
WEEKSINYEAR(ADATE TIMESTAMP)
WEEKSINYEAR(ADATE VARCHAR(26))

RETURNS SMALLINT

Description

Returns the number of weeks in AYEAR (weeks start on a Sunday, and partial weeks are permitted at the start and end
of the year), or the number of weeks in the year that ADATE exists within depending on the variant of the function
that is called.

Parameters

AYEAR If provided, the year for which to calculate the number of weeks.

ADATE If provided, the date in the year for which to calculate the number of weeks. Either AYEAR or ADATE
must be specified.

Examples

Calculate the number of weeks in the year 2010:

VALUES WEEKSINYEAR(2010);

1

53

Calculate the number of weeks in the first 10 years of the 21st century:

SELECT YEAR(D) AS YEAR, WEEKSINYEAR(D) AS WEEKS
FROM TABLE(DATE_RANGE(’2000-01-01’, ’2010-01-01’, 10000));

YEAR WEEKS
----------- ------

2000 54
2001 53
2002 53
2003 53
2004 53
2005 53
2006 53
2007 53
2008 53
2009 53
2010 53

See Also

• Source code

1.7. Reference 75

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L1312

db2utils Documentation, Release 0.2

• WEEKSINYEAR_ISO scalar function

• WEEK (built-in function)

WEEKSINYEAR_ISO scalar function

Returns the number of weeks within the year that ADATE exists within, or the number of weeks in AYEAR according
to the ISO8601 standard.

Prototypes

WEEKSINYEAR_ISO(AYEAR INTEGER)
WEEKSINYEAR_ISO(ADATE DATE)
WEEKSINYEAR_ISO(ADATE TIMESTAMP)
WEEKSINYEAR_ISO(ADATE VARCHAR(26))

RETURNS SMALLINT

Description

Returns the number of weeks in AYEAR according to the ISO8601 standard (weeks start on a Monday, and overlap
calendar year ends to ensure all weeks are “whole”), or the number of weeks in the year that ADATE exists within
depending on the variant of the function that is called.

Parameters

AYEAR If provided, the year for which to calculate the number of weeks.

ADATE If provided, the date in the year for which to calculate the number of weeks. Either AYEAR or ADATE
must be specified.

Examples

Calculate the number of weeks in the year 2010 according to ISO8601:

VALUES WEEKSINYEAR_ISO(2010);

1

52

Calculate the number of weeks in the first 10 years of the 21st century according to ISO8601:

SELECT YEAR(D) AS YEAR, WEEKSINYEAR_ISO(D) AS WEEKS
FROM TABLE(DATE_RANGE(’2000-01-01’, ’2010-01-01’, 10000));

YEAR WEEKS
----------- ------

2000 52
2001 52
2002 52
2003 52
2004 53

76 Chapter 1. Table of Contents

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000871.html

db2utils Documentation, Release 0.2

2005 52
2006 52
2007 52
2008 52
2009 53
2010 52

See Also

• Source code

• WEEKSINYEAR scalar function

• WEEK_ISO (built-in function)

WEEKSTART scalar function

Returns the first day (always a Sunday) of the week that ADATE exists within, or the first day of the week AWEEK
in the year AYEAR.

Prototypes

WEEKSTART(AYEAR INTEGER, AWEEK INTEGER)
WEEKSTART(ADATE DATE)
WEEKSTART(ADATE TIMESTAMP)
WEEKSTART(ADATE VARCHAR(26))

RETURNS DATE

Description

Returns a DATE representing the first day of AWEEK in AYEAR, or the first day of the week of ADATE (always a
Sunday) depending on the variant of the function that is called.

Parameters

AYEAR If provided, the year of AWEEK for which to return the starting date.

AWEEK If provided, the week for which to return to the starting date.

ADATE If provided the date in the week for which to return the starting date. Either AYEAR and AWEEK, or
ADATE must be specified.

Examples

Calculate the starting date of the first week in 2010:

VALUES WEEKSTART(2010, 1);

1.7. Reference 77

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L1376
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0005481.html

db2utils Documentation, Release 0.2

1

2009-12-27

Calculate the start of the week for the 28th of January, 2009:

VALUES WEEKSTART(’2009-01-28’);

1

2009-01-25

See Also

• Source code

• WEEKEND scalar function

• WEEKSTART_ISO scalar function

• WEEK (built-in function)

WEEKSTART_ISO scalar function

Returns the first day (always a Monday) of the week that ADATE exists within, or the first day of the week AWEEK
in the year AYEAR according to the ISO8601 standard.

Prototypes

WEEKSTART_ISO(AYEAR INTEGER, AWEEK INTEGER)
WEEKSTART_ISO(ADATE DATE)
WEEKSTART_ISO(ADATE TIMESTAMP)
WEEKSTART_ISO(ADATE VARCHAR(26))

RETURNS DATE

Description

Returns a DATE representing the first day of AWEEK in AYEAR according to the ISO8601 standard, or the first day
of the week of ADATE (always a Monday) depending on the variant of the function that is called.

Parameters

AYEAR If provided, the year of AWEEK for which to return the starting date.

AWEEK If provided, the week for which to return to the starting date.

ADATE If provided the date in the week for which to return the starting date. Either AYEAR and AWEEK, or
ADATE must be specified.

78 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L1048
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000871.html

db2utils Documentation, Release 0.2

Examples

Calculate the starting date of the first week in 2010:

VALUES WEEKSTART_ISO(2010, 1);

1

2010-01-04

Calculate the start of the week for the 28th of January, 2009:

VALUES WEEKSTART_ISO(’2009-01-28’);

1

2009-01-26

See Also

• Source code

• WEEKEND_ISO scalar function

• WEEKSTART scalar function

• WEEK_ISO (built-in function)

WORKINGDAY scalar function

Calculates the working day of a specified date relative to another date which defaults to the start of the month

Prototypes

WORKINGDAY(ADATE DATE, RELATIVE_TO DATE, ALOCATION VARCHAR(10))
WORKINGDAY(ADATE DATE, RELATIVE_TO DATE)
WORKINGDAY(ADATE DATE, ALOCATION VARCHAR(10))
WORKINGDAY(ADATE DATE)

RETURNS INTEGER

Description

The WORKINGDAY function calculates the working day of a specified date relative to another date. The working day
is defined as the number of days which are not Saturday or Sunday from the starting date to the specified date, plus
one. Hence, if the starting date is neither a Saturday nor a Sunday, it is working day 1, the next non-weekend-day is
working day 2 and so on.

Requesting the working day of a Saturday or a Sunday will return the working day value of the prior Friday; it is not
an error to query the working day of a weekend day, you should instead check for this in the calling code.

If the RELATIVE_TO parameter is omitted it will default to the start of the month of the ADATE parameter. In other
words, by default this function calculates the working day of the month of a given date.

1.7. Reference 79

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L1180
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0005481.html

db2utils Documentation, Release 0.2

If you wish to take into account more than merely weekend days when calculating working days, insert values into
VACATIONS. If a vacation date occurs between the starting date and the target date (inclusive), it will count as another
weekend date resulting in a working day one less than would otherwise be calculated. Note that the VACATIONS
table will only be used when you specify a value for the optional ALOCATION parameter. This parameter is used
to filter the content of the VACATIONS table under the assumption that different locations, most likely countries, will
have different public holidays.

Parameters

ADATE The date to calculate the working day from.

RELATIVE_TO If specified, the date to calculate the working day relative to, i.e. the function counts the number of
working days between RELATIVE_TO and ADATE. If omitted, defaults to the start of the month of ADATE.

ALOCATION If specified, causes the function to take into account additional vacation days defined in VACATIONS
with the specified LOCATION.

Examples

Calculate the working day of the first date in 2010:

VALUES WORKINGDAY(YEARSTART(2010));

1

1

Calculate the working day of the 4th of January, 2010 (the 2nd and 3rd of January 2010 are Saturday and Sunday
respectively):

VALUES WORKINGDAY(DATE(2010, 1, 4))

1

2

Calculate the number of working days in January 2010:

VALUES WORKINGDAY(MONTHEND(2010, 1))

1

21

Calculate the total number of working days in 2010:

VALUES WORKINGDAY(YEAREND(2010), YEARSTART(2010))

1

261

See Also

• Source code

80 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L2483

db2utils Documentation, Release 0.2

YEAR_CLAIM scalar function

Returns the year that ADATE exists within, according to the CLAIM calendar.

Prototypes

YEAR_CLAIM(ADATE DATE)
YEAR_CLAIM(ADATE TIMESTAMP)
YEAR_CLAIM(ADATE VARCHAR(26))

RETURNS SMALLINT

Description

Returns the year of ADATE, according to the CLAIM calendar. ADATE can be expressed as a DATE value, a
TIMESTAMP, or a VARCHAR containing a valid string representation of a date or timestamp. If ADATE is NULL,
the result is NULL.

Parameters

ADATE The date to calculate the year of, according to the CLAIM calendar.

Examples

Calculate the CLAIM year for the 31st of December, 2010:

VALUES YEAR_CLAIM(DATE(2010, 12, 31));

1

2011

Calculate the length of all CLAIM years in the decade starting 2000:

SELECT YEAR_CLAIM(D) AS YEAR, COUNT(*) AS DAYS
FROM TABLE(DATE_RANGE(YEARSTART_CLAIM(2000), YEAREND_CLAIM(2010)))
GROUP BY YEAR_CLAIM(D);

YEAR DAYS
------ -----------

2000 364
2001 364
2002 364
2003 371
2004 364
2005 364
2006 364
2007 364
2008 371
2009 364
2010 364

1.7. Reference 81

db2utils Documentation, Release 0.2

See Also

• Source code

• YEAR (built-in function)

• DAY_CLAIM

• WEEK_CLAIM scalar function

• MONTH_CLAIM scalar function

• QUARTER_CLAIM scalar function

YEAR_ISO scalar function

Returns the year of ADATE, unless the ISO week of ADATE exists in the prior year in which case that year is returned.

Prototypes

YEAR_ISO(ADATE DATE)
YEAR_ISO(ADATE TIMESTAMP)
YEAR_ISO(ADATE VARCHAR(26))

RETURNS SMALLINT

Description

Returns the year of ADATE, unless the ISO week number (see the built-in function WEEK_ISO) of ADATE belongs
to the prior year, in which case the prior year is returned.

Parameters

ADATE The date to calculate the ISO-week based year number for.

Examples

Calculate the ISO-week based year number of the 1st of January, 2010:

VALUES YEAR_ISO(DATE(2010, 1, 1));

1

2009

Calculate the ISO-week based year number of the 4th of January, 2010 (dates beyond the 4th of January will always
be in the year of the date given the definition of ISO weeks):

VALUES YEAR_ISO(DATE(2010, 1, 4)));

1

2010

82 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L2753
http://pic.dhe.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000872.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0005481.html

db2utils Documentation, Release 0.2

See Also

• Source code

• YEAR (built-in function)

• WEEK_ISO (built-in function)

YEAREND scalar function

Returns the last day of the year AYEAR, or the last day of the year of ADATE.

Prototypes

YEAREND(AYEAR INTEGER)
YEAREND(ADATE DATE)
YEAREND(ADATE TIMESTAMP)
YEAREND(ADATE VARCHAR(26))

RETURNS DATE

Description

Returns a DATE representing the last day of AYEAR, or the last day of the year of ADATE depending on the variant
of the function that is called.

Parameters

AYEAR If provided, the year for which to return the ending date.

ADATE If provided the date in the year for which to return the ending date. Either AYEAR or ADATE must be
specified.

Examples

Calculate the ending date of 2010:

VALUES YEAREND(2010);

1

2010-12-31

Calculate the ending date of the year for the 28th February, 2009:

VALUES YEAREND(’2009-02-28’);

1

2009-12-31

1.7. Reference 83

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L401
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000872.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0005481.html

db2utils Documentation, Release 0.2

See Also

• Source code

• YEARSTART scalar function

• YEAR (built-in function)

YEAREND_CLAIM scalar function

Returns the last day of the year AYEAR, or the last day of the year of ADATE, according to the CLAIM calendar.

Prototypes

YEAREND_CLAIM(AYEAR INTEGER)
YEAREND_CLAIM(ADATE DATE)
YEAREND_CLAIM(ADATE TIMESTAMP)
YEAREND_CLAIM(ADATE VARCHAR(26))

RETURNS DATE

Description

Returns a DATE representing the last day of AYEAR, or the last day of the year of ADATE depending on the variant
of the function that is called, according to the CLAIM calendar.

Parameters

AYEAR If provided, the year for which to return the ending date.

ADATE If provided the date in the year for which to return the ending date. Either AYEAR or ADATE must be
specified.

Examples

Calculate the ending date of 2010, according to the CLAIM calendar:

VALUES YEAREND_CLAIM(2010);

1

2010-12-24

Calculate the ending date of the CLAIM year containing the 28th February, 2009:

VALUES YEAREND_CLAIM(’2009-02-28’);

1

2009-12-25

84 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L984
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000872.html

db2utils Documentation, Release 0.2

See Also

• Source code

• YEARSTART_CLAIM scalar function

YEARSTART scalar function

Returns the first day of the year that ADATE exists within, or the first day of the year AYEAR.

Prototypes

YEARSTART(AYEAR INTEGER)
YEARSTART(ADATE DATE)
YEARSTART(ADATE TIMESTAMP)
YEARSTART(ADATE VARCHAR(26))

RETURNS DATE

Description

Returns a DATE representing the first day of AYEAR, or the first day of the year of ADATE depending on the variant
of the function that is called.

Parameters

AYEAR If provided, the year for which to return the starting date.

ADATE If provided the date in the year for which to return the starting date. Either AYEAR or ADATE must be
specified.

Examples

Calculate the starting date of 2010:

VALUES YEARSTART(2010);

1

2010-01-01

Calculate the starting date of the year for the 28th February, 2009:

VALUES YEARSTART(’2009-02-28’);

1

2009-01-01

1.7. Reference 85

https://github.com/waveform80/db2utils/blob/ibm/date_time.sql#L2660

db2utils Documentation, Release 0.2

See Also

• Source code

• YEAREND scalar function

• YEAR (built-in function)

YEARSTART_CLAIM scalar function

Returns the first day of the year AYEAR, or the first day of the year of ADATE, according to the CLAIM calendar.

Prototypes

YEARSTART_CLAIM(AYEAR INTEGER)
YEARSTART_CLAIM(ADATE DATE)
YEARSTART_CLAIM(ADATE TIMESTAMP)
YEARSTART_CLAIM(ADATE VARCHAR(26))

RETURNS DATE

Description

Returns a DATE representing the first day of AYEAR, or the first day of the year of ADATE depending on the variant
of the function that is called, according to the CLAIM calendar.

Parameters

AYEAR If provided, the year for which to return the starting date.

ADATE If provided the date in the year for which to return the starting date. Either AYEAR or ADATE must be
specified.

Examples

Calculate the starting date of 2010, according to the CLAIM calendar:

VALUES YEARSTART_CLAIM(2010);

1

2009-12-26

Calculate the starting date of the CLAIM year containing the 28th February, 2009:

VALUES YEARSTART_CLAIM(’2009-02-28’);

1

2008-12-27

86 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/date_time.sql#L920
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000872.html

db2utils Documentation, Release 0.2

See Also

• Source code

• YEAREND_CLAIM scalar function

1.7.2 Procedures

ASSERT_COLUMN_EXISTS procedure

Raises an assertion error if the specified column doesn’t exist.

Prototypes

ASSERT_COLUMN_EXISTS(ASCHEMA VARCHAR(128), ATABLE VARCHAR(128), ACOLNAME VARCHAR(128))
ASSERT_COLUMN_EXISTS(ATABLE VARCHAR(128), ACOLNAME VARCHAR(128))

Description

Raises the ASSERT_FAILED_STATE state if ACOLNAME does not exist in the table specified by ASCHEMA and
ATABLE. If not specified, ASCHEMA defaults to the value of the CURRENT SCHEMA special register.

Parameters

ASCHEMA Specifies the schema containing the table to check. If omitted, defaults to the value of the CURRENT
SCHEMA special register.

ATABLE Specifies the name of the table to check.

ACOLNAME Specifies the name of the column to test for existence.

Examples

Test the TABNAME column exists in the SYSCAT.TABLES view:

CALL ASSERT_COLUMN_EXISTS(’SYSCAT’, ’TABLES’, ’TABNAME’);

Test the existence of a made-up column in the SYSCAT.TABLES view:

CALL ASSERT_COLUMN_EXISTS(’SYSCAT’, ’TABLES’, ’FOO’);

SQL0438N Application raised error or warning with diagnostic text: "FOO
does not exist in SYSCAT.TABLES ". SQLSTATE=90001

See Also

• Source code

• ASSERT_TABLE_EXISTS procedure

• ASSERT_TRIGGER_EXISTS procedure

1.7. Reference 87

https://github.com/waveform80/db2utils/blob/ibm/date_time.sql#L2679
https://github.com/waveform80/db2utils/blob/master/assert.sql#L164

db2utils Documentation, Release 0.2

• ASSERT_ROUTINE_EXISTS procedure

• ASSERT_FAILED_STATE

ASSERT_SIGNALS procedure

Signals ASSERT_FAILED_STATE if the execution of SQL doesn’t signal SQLSTATE STATE, or signals a different
SQLSTATE.

Prototypes

ASSERT_SIGNALS(STATE CHAR(5), SQL CLOB(2M))

Description

Raises the ASSERT_FAILED_STATE if executing SQL does NOT raise SQLSTATE STATE. SQL must be capable of
being executed by EXECUTE IMMEDIATE, i.e. no queries or SIGNAL calls.

Parameters

STATE The SQLSTATE that is expected to be raised by executing the content of the SQL parameter.

SQL The SQL statement to execute.

Examples

Attempt to drop the non-existent table FOO, and confirm that the operation raises SQLSTATE 42704:

CALL ASSERT_SIGNALS(’42704’, ’DROP TABLE FOO’);

Raise the ASSERT_FAILED_STATE by attempting to assert that the same SQLSTATE is raised by simply querying the
current date:

CALL ASSERT_SIGNALS(’42704’, ’VALUES CURRENT DATE’);

SQL0438N Application raised error or warning with diagnostic text: "VALUES
CURRENT DATE signalled SQLSTATE 00000 instead of 42704". SQLSTATE=90001

See Also

• Source code

ASSERT_ROUTINE_EXISTS procedure

Raises an assertion error if the specified function or stored procedure doesn’t exist.

88 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/assert.sql#L77

db2utils Documentation, Release 0.2

Prototypes

ASSERT_ROUTINE_EXISTS(ASCHEMA VARCHAR(128), AROUTINE VARCHAR(128))
ASSERT_ROUTINE_EXISTS(AROUTINE VARCHAR(128))

Description

Raises the ASSERT_FAILED_STATE state if the function or stored procedure specified by ASCHEMA and AROU-
TINE does not exist. If not specified, ASCHEMA defaults to the value of the CURRENT SCHEMA special register.

Parameters

ASCHEMA Specifies the schema containing the routine to check. If omitted, defaults to the value of the CURRENT
SCHEMA special register.

ATRIGGER Specifies the name of the routine to check.

Examples

Test the UTILS.DATE function exists:

CALL ASSERT_ROUTINE_EXISTS(’UTILS’, ’DATE’);

Test the existence of the routine FOO in the current schema:

CALL ASSERT_ROUTINE_EXISTS(’FOO’);

SQL0438N Application raised error or warning with diagnostic text:
"DB2INST1.FOO does not exist".
SQLSTATE=90001

See Also

• Source code

• ASSERT_COLUMN_EXISTS procedure

• ASSERT_TABLE_EXISTS procedure

• ASSERT_ROUTINE_EXISTS procedure

• ASSERT_FAILED_STATE

ASSERT_TABLE_EXISTS procedure

Raises an assertion error if the specified table doesn’t exist.

Prototypes

ASSERT_TABLE_EXISTS(ASCHEMA VARCHAR(128), ATABLE VARCHAR(128))
ASSERT_TABLE_EXISTS(ATABLE VARCHAR(128))

1.7. Reference 89

https://github.com/waveform80/db2utils/blob/master/assert.sql#L266

db2utils Documentation, Release 0.2

Description

Raises the ASSERT_FAILED_STATE state if the table or view specified by ASCHEMA and ATABLE does not exist.
If not specified, ASCHEMA defaults to the value of the CURRENT SCHEMA special register.

Parameters

ASCHEMA Specifies the schema containing the table to check. If omitted, defaults to the value of the CURRENT
SCHEMA special register.

ATABLE Specifies the name of the table to check.

Examples

Test the SYSCAT.TABLES view exists:

CALL ASSERT_TABLE_EXISTS(’SYSCAT’, ’TABLES’);

Test the existence of a made-up table in SYSCAT:

CALL ASSERT_TABLE_EXISTS(’SYSCAT’, ’FOO’);

SQL0438N Application raised error or warning with diagnostic text:
"SYSCAT.FOO does not exist".
SQLSTATE=90001

See Also

• Source code

• ASSERT_COLUMN_EXISTS procedure

• ASSERT_TRIGGER_EXISTS procedure

• ASSERT_ROUTINE_EXISTS procedure

• ASSERT_FAILED_STATE

ASSERT_TRIGGER_EXISTS procedure

Raises an assertion error if the specified trigger doesn’t exist.

Prototypes

ASSERT_TRIGGER_EXISTS(ASCHEMA VARCHAR(128), ATRIGGER VARCHAR(128))
ASSERT_TRIGGER_EXISTS(ATRIGGER VARCHAR(128))

Description

Raises the ASSERT_FAILED_STATE state if the trigger specified by ASCHEMA and ATRIGGER does not exist. If
not specified, ASCHEMA defaults to the value of the CURRENT SCHEMA special register.

90 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/assert.sql#L115

db2utils Documentation, Release 0.2

Parameters

ASCHEMA Specifies the schema containing the trigger to check. If omitted, defaults to the value of the CURRENT
SCHEMA special register.

ATRIGGER Specifies the name of the trigger to check.

Examples

Test the UTILS.VACATIONS_INSERT trigger exists:

CALL ASSERT_TRIGGER_EXISTS(’UTILS’, ’VACATIONS_INSERT’);

Test the existence of the trigger VACATIONS_DELETE in the current schema:

CALL ASSERT_TRIGGER_EXISTS(’VACATIONS_DELETE’);

SQL0438N Application raised error or warning with diagnostic text:
"DB2INST1.VACATIONS_DELETE does not exist".
SQLSTATE=90001

See Also

• Source code

• ASSERT_COLUMN_EXISTS procedure

• ASSERT_TABLE_EXISTS procedure

• ASSERT_ROUTINE_EXISTS procedure

• ASSERT_FAILED_STATE

AUTO_DELETE procedure

Automatically removes data from DEST_TABLE that doesn’t exist in SOURCE_TABLE, based on DEST_KEY.

Prototypes

AUTO_DELETE(SOURCE_SCHEMA VARCHAR(128), SOURCE_TABLE VARCHAR(128), DEST_SCHEMA VARCHAR(128), DEST_TABLE VARCHAR(128), DEST_KEY VARCHAR(128))
AUTO_DELETE(SOURCE_SCHEMA VARCHAR(128), SOURCE_TABLE VARCHAR(128), DEST_SCHEMA VARCHAR(128), DEST_TABLE VARCHAR(128))
AUTO_DELETE(SOURCE_TABLE VARCHAR(128), DEST_TABLE VARCHAR(128), DEST_KEY VARCHAR(128))
AUTO_DELETE(SOURCE_TABLE VARCHAR(128), DEST_TABLE VARCHAR(128))

Description

The AUTO_DELETE procedure deletes rows from DEST_TABLE that do not exist in SOURCE_TABLE. This
procedure is intended to be used after AUTO_MERGE procedure has been used to upsert from the source to the
destination.

The DEST_KEY parameter specifies the name of the unique key to use for identifying rows in the destination table.
If specified, it must be the name of a unique key or primary key which covers columns which exist in both the source
and destination tables. If omitted, it defaults to the name of the primary key of the destination table.

1.7. Reference 91

https://github.com/waveform80/db2utils/blob/master/assert.sql#L218

db2utils Documentation, Release 0.2

If SOURCE_SCHEMA and DEST_SCHEMA are not specified they default to the current schema.

The destination table must have at least one unique key (or a primary key), and the executing user must have DELETE
privileges on the destination table.

Parameters

SOURCE_SCHEMA If provided, specifies the schema containing SOURCE_TABLE. If omitted, defaults to the
value of the CURRENT SCHEMA special register.

SOURCE_TABLE Specifies the name of the table within SOURCE_SCHEMA to read for the list of rows to be
preserved.

DEST_SCHEMA If provided, specifies the schema containing DEST_TABLE. If omitted, defaults to the value of
the CURRENT SCHEMA special register.

DEST_TABLE Specifies the name of the table within DEST_SCHEMA from which data will be deleted. This table
must have at least one unique key (or a primary key).

DEST_KEY If provided, specifies the name of the unique key in the destination table which will be joined to the
equivalently named fields in the source table to determine which rows to delete. If omitted, defaults to the name
of the primary key of the destination table.

Examples

Merge new content from EMP_SOURCE into the EMPLOYEES table, matching rows via the primary key of EM-
PLOYEES, then delete rows in EMPLOYEES that no longer exist in EMP_SOURCE:

CALL AUTO_MERGE(’EMP_SOURCE’, ’EMPLOYEES’);
CALL AUTO_DELETE(’EMP_SOURCE’, ’EMPLOYEES’);

Delete content from IW.CONTRACTS that no longer exists in STAGING.CONTRACTS, using a specific unique key for
matching rows:

CALL AUTO_DELETE(’STAGING’, ’CONTRACTS’, ’IW’, ’CONTRACTS’, ’CONTRACTS_KEY’);

See Also

• Source code

• AUTO_MERGE procedure

• AUTO_INSERT procedure

AUTO_INSERT procedure

Automatically inserts data into DEST_TABLE from SOURCE_TABLE.

Prototypes

AUTO_INSERT(SOURCE_SCHEMA VARCHAR(128), SOURCE_TABLE VARCHAR(128), DEST_SCHEMA VARCHAR(128), DEST_TABLE VARCHAR(128))
AUTO_INSERT(SOURCE_TABLE VARCHAR(128), DEST_TABLE VARCHAR(128))

92 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/merge.sql#L491

db2utils Documentation, Release 0.2

Description

The AUTO_INSERT procedure inserts all data from SOURCE_TABLE into DEST_TABLE by means of an auto-
matically generated INSERT statement covering all columns common to both tables.

If SOURCE_SCHEMA and DEST_SCHEMA are not specified they default to the current schema.

Only columns common to both the destination table and the source table will be included in the generated statement.
Destination columns must be updateable (they cannot be defined as GENERATED ALWAYS), and the executing user
must have INSERT privileges on the destination table.

Parameters

SOURCE_SCHEMA If provided, specifies the schema containing SOURCE_TABLE. If omitted, defaults to the
value of the CURRENT SCHEMA special register.

SOURCE_TABLE Specifies the name of the table within SOURCE_SCHEMA from which to read data.

DEST_SCHEMA If provided, specifies the schema containing DEST_TABLE. If omitted, defaults to the value of
the CURRENT SCHEMA special register.

DEST_TABLE Specifies the name of the table within DEST_SCHEMA into which data will be copied.

Examples

Insert all content from NEW_EMP into EMPLOYEES:

CALL AUTO_INSERT(’NEW_EMP’, ’EMPLOYEES’);

Replace all content in IW.CONTRACTS with content from STAGING.CONTRACTS:

TRUNCATE IW.CONTRACTS
REUSE STORAGE
RESTRICT WHEN DELETE TRIGGERS
IMMEDIATE;

CALL AUTO_INSERT(’STAGING’, ’CONTRACTS’, ’IW’, ’CONTRACTS’);

See Also

• Source code

• AUTO_MERGE procedure

• AUTO_DELETE procedure

AUTO_MERGE procedure

Automatically inserts/updates (“upserts”) data from SOURCE_TABLE into DEST_TABLE, based on DEST_KEY.

Prototypes

1.7. Reference 93

https://github.com/waveform80/db2utils/blob/master/merge.sql#L329

db2utils Documentation, Release 0.2

AUTO_MERGE(SOURCE_SCHEMA VARCHAR(128), SOURCE_TABLE VARCHAR(128), DEST_SCHEMA VARCHAR(128), DEST_TABLE VARCHAR(128), DEST_KEY VARCHAR(128))
AUTO_MERGE(SOURCE_SCHEMA VARCHAR(128), SOURCE_TABLE VARCHAR(128), DEST_SCHEMA VARCHAR(128), DEST_TABLE VARCHAR(128))
AUTO_MERGE(SOURCE_TABLE VARCHAR(128), DEST_TABLE VARCHAR(128), DEST_KEY VARCHAR(128))
AUTO_MERGE(SOURCE_TABLE VARCHAR(128), DEST_TABLE VARCHAR(128))

Description

The AUTO_MERGE procedure performs an “upsert”, or combined insert and update of all data from
SOURCE_TABLE into DEST_TABLE by means of an automatically generated MERGE statement.

The DEST_KEY parameter specifies the name of the unique key to use for identifying rows in the destination table.
If specified, it must be the name of a unique key or primary key which covers columns which exist in both the source
and destination tables. If omitted, it defaults to the name of the primary key of the destination table.

If SOURCE_SCHEMA and DEST_SCHEMA are not specified they default to the current schema.

Only columns common to both the destination table and the source table will be included in the generated statement.
Destination columns must be updateable (they cannot be defined as GENERATED ALWAYS), and the executing user
must have INSERT and UPDATE privileges on the destination table.

Parameters

SOURCE_SCHEMA If provided, specifies the schema containing SOURCE_TABLE. If omitted, defaults to the
value of the CURRENT SCHEMA special register.

SOURCE_TABLE Specifies the name of the table within SOURCE_SCHEMA from which data will be read.

DEST_SCHEMA If provided, specifies the schema containing DEST_TABLE. If omitted, defaults to the value of
the CURRENT SCHEMA special register.

DEST_TABLE Specifies the name of the table within DEST_SCHEMA into which data will be inserted or updated.
This table must have at least one unique key (or a primary key).

DEST_KEY If provided, specifies the name of the unique key in the destination table which will be joined to the
equivalently named fields in the source table to determine whether rows are to be inserted or updated. If omitted,
defaults to the name of the primary key of the destination table.

Examples

Merge new content from EMP_SOURCE into the EMPLOYEES table, matching rows via the primary key of EM-
PLOYEES, then delete rows in EMPLOYEES that no longer exist in EMP_SOURCE:

CALL AUTO_MERGE(’EMP_SOURCE’, ’EMPLOYEES’);
CALL AUTO_DELETE(’EMP_SOURCE’, ’EMPLOYEES’);

Merge new content from STAGING.CONTRACTS into IW.CONTRACTS, using a specific unique key for matching
rows:

CALL AUTO_MERGE(’STAGING’, ’CONTRACTS’, ’IW’, ’CONTRACTS’, ’CONTRACTS_KEY’);

See Also

• Source code

• AUTO_DELETE procedure

94 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/merge.sql#L382

db2utils Documentation, Release 0.2

• AUTO_INSERT procedure

COPY_AUTH procedure

Grants all authorities held by the source to the target, provided they are not already held (i.e. does not “re-grant”
authorities already held).

Prototypes

COPY_AUTH(SOURCE VARCHAR(128), SOURCE_TYPE VARCHAR(1), DEST VARCHAR(128), DEST_TYPE VARCHAR(1), INCLUDE_PERSONAL VARCHAR(1))
COPY_AUTH(SOURCE VARCHAR(128), DEST VARCHAR(128), INCLUDE_PERSONAL VARCHAR(1))
COPY_AUTH(SOURCE VARCHAR(128), DEST VARCHAR(128))

Description

COPY_AUTH is a procedure which copies all authorizations from the source grantee (SOURCE) to the destination
grantee (DEST). Note that the implementation does not preserve the grantor, although technically this would be
possible by utilizing the SET SESSION USER facility introduced by DB2 9, nor does it remove extra permissions that
the destination grantee already possessed prior to the call. Furthermore, method authorizations are not copied.

Parameters

SOURCE The name of the user, group, or role to copy permissions from.

SOURCE_TYPE One of ’U’, ’G’, or ’R’ indicating whether SOURCE refers to a user, group, or role respectively.
If this parameter is omitted AUTH_TYPE scalar function will be used to determine the type of SOURCE.

DEST The name of the user, group, or role to copy permissions to.

DEST_TYPE One of ’U’, ’G’, or ’R’ indicating whether DEST refers to a user, group, or role respectively. If this
parameter is omitted AUTH_TYPE scalar function will be used to determine the type of DEST.

INCLUDE_PERSONAL If this parameter is ’Y’ and SOURCE refers to a user, then permissions associated with
the user’s personal schema will be included in the transfer. Defaults to ’N’ if omitted.

Examples

Copy authorizations from the user TOM to the user DICK, excluding any permissions associated with the TOM schema.

CALL COPY_AUTH(’TOM’, ’DICK’, ’N’);

Copy permissions granted to a group called FINANCE to a role called FINANCE (the INCLUDE_PERSONAL
parameter is set to ’N’ here, but is effectively redundant as SOURCE_TYPE is not ’U’).

CALL COPY_AUTH(’FINANCE’, ’G’, ’FINANCE’, ’R’, ’N’);

See Also

• Source code

• AUTH_TYPE scalar function

1.7. Reference 95

https://github.com/waveform80/db2utils/blob/master/auth.sql#L783

db2utils Documentation, Release 0.2

• AUTH_DIFF table function

• AUTHS_HELD table function

• MOVE_AUTH procedure

• REMOVE_AUTH procedure

CREATE_EXCEPTION_TABLE procedure

Creates an exception table based on the structure of the specified table.

Prototypes

CREATE_EXCEPTION_TABLE(SOURCE_SCHEMA VARCHAR(128), SOURCE_TABLE VARCHAR(128), DEST_SCHEMA VARCHAR(128), DEST_TABLE VARCHAR(128), DEST_TBSPACE VARCHAR(18))
CREATE_EXCEPTION_TABLE(SOURCE_SCHEMA VARCHAR(128), SOURCE_TABLE VARCHAR(128), DEST_SCHEMA VARCHAR(128), DEST_TABLE VARCHAR(128))
CREATE_EXCEPTION_TABLE(SOURCE_TABLE VARCHAR(128), DEST_TABLE VARCHAR(128), DEST_TBSPACE VARCHAR(18))
CREATE_EXCEPTION_TABLE(SOURCE_TABLE VARCHAR(128), DEST_TABLE VARCHAR(128))
CREATE_EXCEPTION_TABLE(SOURCE_TABLE VARCHAR(128))

Description

The CREATE_EXCEPTION_TABLE procedure creates, from a template table (specified by SOURCE_SCHEMA
and SOURCE_TABLE), another table (named by DEST_SCHEMA and DEST_TABLE) designed to hold LOAD
and SET INTEGRITY exceptions from the template table. The new table is identical to the template table, but contains
two extra fields: EXCEPT_MSG (which stores information about the exception that occurred when loading or setting
the integrity of the table), and EXCEPT_TS, a TIMESTAMP field indicating when the exception the occurred.

The DEST_TBSPACE parameter identifies the tablespace used to store the new table’s data. If DEST_TBSPACE is
omitted it defaults to the tablespace of the template table.

Of the other parameters, only SOURCE_TABLE is mandatory. If DEST_TABLE is not specified it defaults to the
value of SOURCE_TABLE with a suffix of ’_EXCEPTIONS’. If SOURCE_SCHEMA and DEST_SCHEMA are
not specified they default to the value of the CURRENT SCHEMA special register.

Warning: If the specified table already exists, this procedure will replace it, potentially losing all its content. If
the existing exceptions data is important to you, make sure you back it up before executing this procedure.

Note: All authorizations present on the source table will be copied to the destination table.

Parameters

SOURCE_SCHEMA If provided, specifies the schema containing the template table on which to base the design of
the new exceptions table. If omitted, defaults to the value of the CURRENT SCHEMA special register.

SOURCE_TABLE Specifies the name of the template table within SOURCE_SCHEMA.

DEST_SCHEMA If provided, specifies the schema in which the new exceptions table will be created. If omitted,
defaults to the value of the CURRENT SCHEMA special register.

DEST_TABLE If provided, specifies the name of the new exceptions table. If omitted, defaults to the value of
SOURCE_TABLE with ’_EXCEPTIONS’ appended to it.

96 Chapter 1. Table of Contents

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0008305.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000998.html

db2utils Documentation, Release 0.2

DEST_TBSPACE If provided, specifies the tablespace in which to store the physical data of the new exceptions table.
Defaults to the tablespace containing the table specified by SOURCE_SCHEMA and SOURCE_TABLE.

Examples

Create a new exceptions table based on the design of the FINANCE.LEDGER table, called EXCEPTIONS.LEDGER in
the EXCEPTSPACE tablespace, then load data into the source table, diverting exceptions to the new exceptions table:

CALL CREATE_EXCEPTION_TABLE(’FINANCE’, ’LEDGER’, ’EXCEPTIONS’, ’LEDGER’, ’EXCEPTSPACE’);
LOAD FROM LEDGER.IXF OF IXF REPLACE INTO FINANCE.LEDGER
FOR EXCEPTION EXCEPTIONS.LEDGER;

Create a new exceptions table based on the EMPLOYEE table in the current schema called EM-
PLOYEE_EXCEPTIONS, in the same tablespace as the source, then LOAD the source table, and finally run a SET
INTEGRITY from the source to the new exceptions table:

CALL CREATE_EXCEPTION_TABLE(’EMPLOYEE’);
LOAD FROM EMPLOYEE.IXF OF IXF REPLACE INTO EMPLOYEE;
SET INTEGRITY FOR EMPLOYEE IMMEDIATE CHECKED

FOR EXCEPTION IN EMPLOYEE USE EMPLOYEE_EXCEPTIONS;

See Also

• Source code

• CREATE_EXCEPTION_VIEW procedure

• LOAD (built-in command)

• SET INTEGRITY (built-in statement)

• Exception tables

CREATE_EXCEPTION_VIEW procedure

Creates a view based on the specified exception table which interprets the content of the EXCEPT_MSG column.

Prototypes

CREATE_EXCEPTION_VIEW(SOURCE_SCHEMA VARCHAR(128), SOURCE_TABLE VARCHAR(128), DEST_SCHEMA VARCHAR(128), DEST_VIEW VARCHAR(128))
CREATE_EXCEPTION_VIEW(SOURCE_TABLE VARCHAR(128), DEST_VIEW VARCHAR(128))
CREATE_EXCEPTION_VIEW(SOURCE_TABLE VARCHAR(128))

Description

The CREATE_EXCEPTION_VIEW procedure creates a view on top of an exceptions table (presumably created with
CREATE_EXCEPTION_TABLE procedure). The view uses a recursive common-table-expression to split the large
EXCEPT_MSG field into several rows and several columns to allow for easier analysis. Instead of EXCEPT_MSG, the
view contains the following exceptions-related fields:

EXCEPT_TYPE A CHAR(1) column containing one of the following values:

• ’K’ - check constraint violation

1.7. Reference 97

https://github.com/waveform80/db2utils/blob/master/exceptions.sql#L43
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.cmd.doc/doc/r0008305.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000998.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001111.html

db2utils Documentation, Release 0.2

• ’F’ - foreign key violation

• ’G’ - generated column violation

• ’I’ - unique index violation

• ’L’ - datalink load violation

• ’D’ - cascaded deletion violation

EXCEPT_OBJECT A VARCHAR(n) column containing the fully qualified name of the object that caused the ex-
ception (e.g. the name of the check constraint, foreign key, column or unique index)

Like CREATE_EXCEPTION_TABLE procedure, this procedure has only one mandatory parameter:
SOURCE_TABLE. If SOURCE_SCHEMA and DEST_SCHEMA are not specified, they default to the value of the
CURRENT SCHEMA special register. If DEST_VIEW is not specified, it defaults to the value of SOURCE_TABLE
with a ’_V’ suffix.

Note: SELECT and CONTROL authorizations are copied from the source table to the destination view (INSERT,
UPDATE, and DELETE authorizations are ignored).

Parameters

SOURCE_SCHEMA If provided, the schema containing the exception table on which to base the new view. Defaults
to the value of the CURRENT SCHEMA special register if omitted.

SOURCE_TABLE Specifies the exception table on which to base the new view. This table is expected to have two
columns named EXCEPT_TS and EXCEPT_MSG.

DEST_SCHEMA If provided, the schema in which to create the new view. Defaults to the value of the CURRENT
SCHEMA special register if omitted.

DEST_VIEW If provided, the name of the new view. Defaults to SOURCE_TABLE with a ’_V’ suffix if omitted.

Examples

Create a view to interpret the content of EXCEPTIONS.LEDGER called FINANCE.LEDGER_EXCEPTIONS:

CALL CREATE_EXCEPTION_VIEW(’EXCEPTIONS’, ’LEDGER’, ’FINANCE’, ’LEDGER_EXCEPTIONS’);

Create a view called EMPLOYEE_EXCEPTIONS_V based on the EMPLOYEE_EXCEPTIONS table in the current
schema:

CALL CREATE_EXCEPTION_VIEW(’EMPLOYEE_EXCEPTIONS’);

See Also

• Source code

• CREATE_EXCEPTION_TABLE procedure

• Exception tables

CREATE_HISTORY_CHANGES procedure

Creates an “OLD vs NEW” changes view on top of the specified history table.

98 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/exceptions.sql#L213
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001111.html

db2utils Documentation, Release 0.2

Prototypes

CREATE_HISTORY_CHANGES(SOURCE_SCHEMA VARCHAR(128), SOURCE_TABLE VARCHAR(128), DEST_SCHEMA VARCHAR(128), DEST_VIEW VARCHAR(128))
CREATE_HISTORY_CHANGES(SOURCE_TABLE VARCHAR(128), DEST_VIEW VARCHAR(128))
CREATE_HISTORY_CHANGES(SOURCE_TABLE VARCHAR(128))

Description

The CREATE_HISTORY_CHANGES procedure creates a view on top of a history table which is assumed to have
a structure generated by CREATE_HISTORY_TABLE procedure. The view represents the history data as a series of
“change” rows. The EFFECTIVE and EXPIRY columns from the source history table are merged into a CHANGED
column, a CHANGE column is calculated to show whether each change was an insertion, update, or deletion, and all
other columns are represented twice as OLD_ and NEW_ variants.

If DEST_VIEW is not specified it defaults to the value of SOURCE_TABLE with ’_HISTORY’ replaced with
’_CHANGES’. If DEST_SCHEMA and SOURCE_SCHEMA are not specified they default to the current schema.

Note: All SELECT and CONTROL authorities present on the source table will be copied to the destination table.

The type of change can be determined by querying the CHANGE column in the new view. The possible values (and
their criteria) are:

CHANGE value Criteria
’INSERT’ If the old key or keys are NULL and the new are non-NULL,the change was an insertion.
’UPDATE’ If both the old and new key or keys are non-NULL the change was an update.
’DELETE’ If the old key or keys are non-NULL and the new are NULL the change was a deletion.
’ERROR’ This should never happen!

Parameters

SOURCE_SCHEMA If provided, specifies the schema containing the history table on which to base the new changes
view. If omitted, defaults to the value of the CURRENT SCHEMA special register.

SOURCE_TABLE The name of the history table on which to base the new changes view.

DEST_SCHEMA If provided, specifies the schema which will contain the new changes view. If omitted, defaults to
the value of the CURRENT SCHEMA special register.

DEST_VIEW If provided, specifies the name of the new changes view. If omitted, defaults to SOURCE_TABLE
with ’_HISTORY’ replaced with ’_CHANGES’.

Examples

Create a CUSTOMERS table in the current schema, then create a history table called CUSTOMERS_HISTORY based
upon on the CUSTOMERS table with DAY resolution. Install the triggers which will keep the history table up to date
with the base table, and finally create a view that will provide old vs. new comparisons of the history:

CREATE TABLE CUSTOMERS (
ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
NAME VARCHAR(100) NOT NULL,
ADDRESS VARCHAR(2000) NOT NULL,
SECTOR CHAR(2) NOT NULL

) COMPRESS YES;
CALL CREATE_HISTORY_TABLE(’CUSTOMERS’, ’DAY’);

1.7. Reference 99

db2utils Documentation, Release 0.2

CALL CREATE_HISTORY_TRIGGERS(’CUSTOMERS’, ’DAY’);
CALL CREATE_HISTORY_CHANGES(’CUSTOMERS_HISTORY’);

The structure of the resulting tables and views can be seen below:

$ db2 DESCRIBE TABLE CUSTOMERS

Data type Column
Column name schema Data type name Length Scale Nulls
------------------------------- --------- ------------------- ---------- ----- ------
ID SYSIBM INTEGER 4 0 No
NAME SYSIBM VARCHAR 100 0 No
ADDRESS SYSIBM VARCHAR 2000 0 No
SECTOR SYSIBM CHARACTER 2 0 No

4 record(s) selected.

$ db2 DESCRIBE TABLE CUSTOMERS_HISTORY

Data type Column
Column name schema Data type name Length Scale Nulls
------------------------------- --------- ------------------- ---------- ----- ------
EFFECTIVE_DAY SYSIBM DATE 4 0 No
EXPIRY_DAY SYSIBM DATE 4 0 No
ID SYSIBM INTEGER 4 0 No
NAME SYSIBM VARCHAR 100 0 No
ADDRESS SYSIBM VARCHAR 2000 0 No
SECTOR SYSIBM CHARACTER 2 0 No

6 record(s) selected.

$ db2 DESCRIBE TABLE CUSTOMERS_CHANGES

Data type Column
Column name schema Data type name Length Scale Nulls
------------------------------- --------- ------------------- ---------- ----- ------
CHANGED SYSIBM DATE 4 0 Yes
CHANGE SYSIBM CHARACTER 6 0 No
OLD_ID SYSIBM INTEGER 4 0 Yes
NEW_ID SYSIBM INTEGER 4 0 Yes
OLD_NAME SYSIBM VARCHAR 100 0 Yes
NEW_NAME SYSIBM VARCHAR 100 0 Yes
OLD_ADDRESS SYSIBM VARCHAR 2000 0 Yes
NEW_ADDRESS SYSIBM VARCHAR 2000 0 Yes
OLD_SECTOR SYSIBM CHARACTER 2 0 Yes
NEW_SECTOR SYSIBM CHARACTER 2 0 Yes

10 record(s) selected.

See Also

• Source code

• CREATE_HISTORY_TABLE procedure

• CREATE_HISTORY_SNAPSHOTS procedure

100 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/history.sql#L1002

db2utils Documentation, Release 0.2

• CREATE_HISTORY_TRIGGERS procedure

• History design usenet post

• CREATE TABLE (built-in command)

• CREATE VIEW (built-in command)

• Time Travel Queries in DB2 v10.1

CREATE_HISTORY_SNAPSHOTS procedure

Creates an exploded view of the specified history table with one row per entity per resolution time-slice (e.g. daily,
monthly, yearly, etc.)

Prototypes

CREATE_HISTORY_SNAPSHOTS(SOURCE_SCHEMA VARCHAR(128), SOURCE_TABLE VARCHAR(128), DEST_SCHEMA VARCHAR(128), DEST_VIEW VARCHAR(128), RESOLUTION VARCHAR(11))
CREATE_HISTORY_SNAPSHOTS(SOURCE_TABLE VARCHAR(128), DEST_VIEW VARCHAR(128), RESOLUTION VARCHAR(11))
CREATE_HISTORY_SNAPSHOTS(SOURCE_TABLE VARCHAR(128), RESOLUTION VARCHAR(11))

Description

The CREATE_HISTORY_SNAPSHOTS procedure creates a view on top of a history table which is assumed to have
a structure generated by CREATE_HISTORY_TABLE procedure. The view represents the history data as a series of
“snapshots” of the main table at various points through time. The EFFECTIVE and EXPIRY columns from the source
history table are replaced with a SNAPSHOT column which indicates the timestamp or date of the snapshot of the
main table. All other columns are represented in their original form.

If DEST_VIEW is not specified it defaults to the value of SOURCE_TABLE with ’_HISTORY’ replaced with a
custom suffix which depends on the value of RESOLUTION. For example, if RESOLUTION is ’MONTH’ then the
suffix is ’MONTHLY’, if RESOLUTION is ’WEEK’, or ’WEEK_ISO’ then the suffix is ’WEEKLY’ and so on. If
DEST_SCHEMA and SOURCE_SCHEMA are not specified they default to the current schema.

The RESOLUTION parameter determines the amount of time between snapshots. Snapshots will be generated for
the end of each period given by a particular RESOLUTION. For example, if RESOLUTION is ’WEEK’ then a
snapshot will be generated for the end of each week according to WEEKEND scalar function from the earliest record
in the history table up to the current date. See CREATE_HISTORY_TRIGGERS procedure for a list of the possible
values.

Note: All SELECT and CONTROL authorities present on the source table will be copied to the destination table.

Parameters

SOURCE_SCHEMA If provided, specifies the schema containing the history table on which to base the new changes
view. If omitted, defaults to the value of the CURRENT SCHEMA special register.

SOURCE_TABLE The name of the history table on which to base the new snapshots view.

DEST_SCHEMA If provided, specifies the schema which will contain the new snapshots view. If omitted, defaults
to the value of the CURRENT SCHEMA special register.

DEST_VIEW If provided, specifies the name of the new snapshots view. If omitted, defaults to SOURCE_TABLE
with ’_HISTORY’ replaced with a suffix determined by the RESOLUTION parameter.

1.7. Reference 101

http://groups.google.com/group/comp.databases.ibm-db2/msg/e84aeb1f6ac87e6c
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000927.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000935.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.dbobj.doc/doc/c0058476.html

db2utils Documentation, Release 0.2

RESOLUTION Specifies the smallest unit of time that an entry in the view can cover. See CRE-
ATE_HISTORY_TRIGGERS procedure for a list of possible values. This should be greater than or equal to
the RESOLUTION specified when the source table was created with CREATE_HISTORY_TABLE procedure
(it is nonsensical to create a snapshot at finer resolution).

Examples

Create an INVOICES table in the current schema, then create a history table called INVOICES_HISTORY based on the
INVOICES table with DAY resolution. Install the triggers which will keep the history table up to date with the base
table, and finally create a view that will provide a weekly snapshot of the data:

CREATE TABLE INVOICES (
INVOICE CHAR(8) NOT NULL PRIMARY KEY,
CUSTOMER CHAR(8) NOT NULL REFERENCES CUSTOMERS(CUSTOMER),
ORDER INTEGER NOT NULL REFERENCES ORDERS(ORDER),
AMOUNT DECIMAL(17,2) NOT NULL,
PAID DATE DEFAULT NULL

) COMPRESS YES;
CALL CREATE_HISTORY_TABLE(’INVOICES’, ’DAY’);
CALL CREATE_HISTORY_TRIGGERS(’INVOICES’, ’DAY’);
CALL CREATE_HISTORY_SNAPSHOTS(’INVOICES_HISTORY’, ’WEEK’);

The structure of the resulting tables and views can be seen below:

$ db2 DESCRIBE TABLE INVOICES

Data type Column
Column name schema Data type name Length Scale Nulls
------------------------------- --------- ------------------- ---------- ----- ------
INVOICE SYSIBM CHARACTER 8 0 No
CUSTOMER SYSIBM CHARACTER 8 0 No
ORDER SYSIBM INTEGER 4 0 No
AMOUNT SYSIBM DECIMAL 17 2 No
PAID SYSIBM DATE 4 0 Yes

5 record(s) selected.

$ db2 DESCRIBE TABLE INVOICES_HISTORY

Data type Column
Column name schema Data type name Length Scale Nulls
------------------------------- --------- ------------------- ---------- ----- ------
EFFECTIVE_DAY SYSIBM DATE 4 0 No
EXPIRY_DAY SYSIBM DATE 4 0 No
INVOICE SYSIBM CHARACTER 8 0 No
CUSTOMER SYSIBM CHARACTER 8 0 No
ORDER SYSIBM INTEGER 4 0 No
AMOUNT SYSIBM DECIMAL 17 2 No
PAID SYSIBM DATE 4 0 Yes

7 record(s) selected.

$ db2 DESCRIBE TABLE INVOICES_WEEKLY

Data type Column
Column name schema Data type name Length Scale Nulls
------------------------------- --------- ------------------- ---------- ----- ------

102 Chapter 1. Table of Contents

db2utils Documentation, Release 0.2

SNAPSHOT SYSIBM DATE 4 0 Yes
INVOICE SYSIBM CHARACTER 8 0 No
CUSTOMER SYSIBM CHARACTER 8 0 No
ORDER SYSIBM INTEGER 4 0 No
AMOUNT SYSIBM DECIMAL 17 2 No
PAID SYSIBM DATE 4 0 Yes

6 record(s) selected.

See Also

• Source code

• CREATE_HISTORY_TABLE procedure

• CREATE_HISTORY_CHANGES procedure

• CREATE_HISTORY_TRIGGERS procedure

• History design usenet post

• CREATE TABLE (built-in command)

• CREATE VIEW (built-in command)

• Time Travel Queries in DB2 v10.1

CREATE_HISTORY_TABLE procedure

Creates a temporal history table based on the structure of the specified table.

Prototypes

CREATE_HISTORY_TABLE(SOURCE_SCHEMA VARCHAR(128), SOURCE_TABLE VARCHAR(128), DEST_SCHEMA VARCHAR(128), DEST_TABLE VARCHAR(128), DEST_TBSPACE VARCHAR(18), RESOLUTION VARCHAR(11))
CREATE_HISTORY_TABLE(SOURCE_TABLE VARCHAR(128), DEST_TABLE VARCHAR(128), DEST_TBSPACE VARCHAR(18), RESOLUTION VARCHAR(11))
CREATE_HISTORY_TABLE(SOURCE_TABLE VARCHAR(128), DEST_TABLE VARCHAR(128), RESOLUTION VARCHAR(11))
CREATE_HISTORY_TABLE(SOURCE_TABLE VARCHAR(128), RESOLUTION VARCHAR(11))

Description

The CREATE_HISTORY_TABLE procedure creates, from a template table specified by SOURCE_SCHEMA and
SOURCE_TABLE, another table named by DEST_SCHEMA and DEST_TABLE designed to hold a representation
of the source table’s content over time. Specifically, the destination table has the same structure as source table,
but with two additional columns named EFFECTIVE_time_period and EXPIRY_time_period (where time_period is
determined by the RESOLUTION parameter), which occur before all other “original” columns. The primary key of
the source table, in combination with EFFECTIVE_time_period will form the primary key of the destination table, and
a unique index involving the primary key and the EXPIRY_time_period column will also be created as this provides
better performance of the triggers used to maintain the destination table.

The DEST_TBSPACE parameter identifies the tablespace used to store the new table’s data. If DEST_TBSPACE
is not specified, it defaults to the tablespace of the source table. If DEST_TABLE is not specified it defaults to the
value of SOURCE_TABLE with ’_HISTORY’ as a suffix. If DEST_SCHEMA and SOURCE_SCHEMA are not
specified they default to the current schema.

1.7. Reference 103

https://github.com/waveform80/db2utils/blob/master/history.sql#L1141
http://groups.google.com/group/comp.databases.ibm-db2/msg/e84aeb1f6ac87e6c
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000927.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000935.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.dbobj.doc/doc/c0058476.html

db2utils Documentation, Release 0.2

The RESOLUTION parameter determines the smallest unit of time that a history record can cover. See CRE-
ATE_HISTORY_TRIGGERS procedure for a list of the possible values.

All SELECT and CONTROL authorities present on the source table will be copied to the destination table. However,
INSERT, UPDATE and DELETE authorities are excluded as these operations should only ever be performed by the
history maintenance triggers themselves. The compression status of the source table will be copied to the destination
table.

Warning: If the specified table already exists, this procedure will replace it, potentially losing all its content. If
the existing history data is important to you, make sure you back it up before executing this procedure.

Note: This procedure is mostly redundant as of DB2 v10.1 which includes the ability to create temporal tables
automatically via the PERIOD element combined with SYSTEM TIME and BUSINESS TIME specifications. How-
ever, the DB2 v10.1 implementation does not include the ability to create temporal tables with particularly coarse
resolutions like WEEK.

Parameters

SOURCE_SCHEMA If provided, specifies the schema containing the template table on which to base the design of
the new history table. If omitted, defaults to the value of the CURRENT SCHEMA special register.

SOURCE_TABLE Specifies the name of the template table within SOURCE_SCHEMA.

DEST_SCHEMA If provided, specifies the schema in which the new exceptions table will be created. If omitted,
defaults to the value of the CURRENT SCHEMA special register.

DEST_TABLE If provided, specifies the name of the new exceptions table. If omitted, defaults to the value of
SOURCE_TABLE with ’_HISTORY’ appended to it.

DEST_TBSPACE The name of the tablespace in which the history table should be created. If omitted, defaults to
the tablespace in which SOURCE_TABLE exists.

RESOLUTION Specifies the granularity of the history to be stored. See CREATE_HISTORY_TRIGGERS procedure
for a description of the possible values.

Examples

Create a CORP.CUSTOMERS table, then create a history table called CORP.CUSTOMERS_HISTORY based upon
on the CORP.CUSTOMERS table in the CORPSPACE tablespace with DATE resolution. Finally, install the triggers
which will keep the history table up to date with the base table:

CREATE TABLE CORP.CUSTOMERS (
ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
NAME VARCHAR(100) NOT NULL,
ADDRESS VARCHAR(2000) NOT NULL,
SECTOR CHAR(2) NOT NULL REFERENCES SECTORS(SECTOR)

) IN CORPSPACE COMPRESS YES;
CALL CREATE_HISTORY_TABLE(’CORP’, ’CUSTOMERS’, ’CORP’, ’CUSTOMERS_HISTORY’, ’CORPSPACE’, ’DAY’);
CALL CREATE_HISTORY_TRIGGERS(’CORP’, ’CUSTOMERS’, ’CORP’, ’CUSTOMERS_HISTORY’, ’DAY’, ’’);

The same example as above, but eliminating as many optional parameters as possible:

SET SCHEMA CORP;
CREATE TABLE CUSTOMERS (

ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
NAME VARCHAR(100) NOT NULL,

104 Chapter 1. Table of Contents

db2utils Documentation, Release 0.2

ADDRESS VARCHAR(2000) NOT NULL,
SECTOR CHAR(2) NOT NULL REFERENCES SECTORS(SECTOR),

) IN CORPSPACE COMPRESS YES;
CALL CREATE_HISTORY_TABLE(’CUSTOMERS’, ’DAY’);
CALL CREATE_HISTORY_TRIGGERS(’CUSTOMERS’, ’DAY’);

Create a history table on top of an existing populated customers table called CORP.CUSTOMERS. Note that before
creating the triggers that link the base table to the history table, we insert the existing rows from CORP.CUSTOMERS
into CORP.CUSTOMERS_HISTORY with some appropriate effective and expiry values (in future a procedure may be
provided to perform this step automatically):

SET SCHEMA CORP;
CALL CREATE_HISTORY_TABLE(’CUSTOMERS’, ’DAY’);
INSERT INTO CUSTOMERS_HISTORY SELECT CURRENT DATE, ’9999-12-31’, T.* FROM CUSTOMERS T;
CALL CREATE_HISTORY_TRIGGERS(’CUSTOMERS’, ’DAY’);

See Also

• Source code

• CREATE_HISTORY_TRIGGERS procedure

• CREATE_HISTORY_CHANGES procedure

• CREATE_HISTORY_SNAPSHOTS procedure

• History design usenet post

• CREATE TABLE (built-in command)

• Time Travel Queries in DB2 v10.1

CREATE_HISTORY_TRIGGERS procedure

Creates the triggers to link the specified table to its corresponding history table.

Prototypes

CREATE_HISTORY_TRIGGERS(SOURCE_SCHEMA VARCHAR(128), SOURCE_TABLE VARCHAR(128), DEST_SCHEMA VARCHAR(128), DEST_TABLE VARCHAR(128), RESOLUTION VARCHAR(11), OFFSET VARCHAR(100))
CREATE_HISTORY_TRIGGERS(SOURCE_TABLE VARCHAR(128), DEST_TABLE VARCHAR(128), RESOLUTION VARCHAR(11), OFFSET VARCHAR(100))
CREATE_HISTORY_TRIGGERS(SOURCE_TABLE VARCHAR(128), RESOLUTION VARCHAR(11), OFFSET VARCHAR(100))
CREATE_HISTORY_TRIGGERS(SOURCE_TABLE VARCHAR(128), RESOLUTION VARCHAR(11))

Description

The CREATE_HISTORY_TRIGGERS procedure creates several trigger linking the specified source table to the des-
tination table which is assumed to have a structure compatible with the result of running CREATE_HISTORY_TABLE
procedure, i.e. two extra columns called EFFECTIVE_time_period and EXPIRY_time_period.

If DEST_TABLE is not specified it defaults to the value of SOURCE_TABLE with ’_HISTORY’ as a suffix. If
DEST_SCHEMA and SOURCE_SCHEMA are not specified they default to the current schema.

The RESOLUTION parameter specifies the smallest unit of time that a history entry can cover. This is effectively
used to quantize the history. The value given for the RESOLUTION parameter should match the value given as

1.7. Reference 105

https://github.com/waveform80/db2utils/blob/master/history.sql#L696
http://groups.google.com/group/comp.databases.ibm-db2/msg/e84aeb1f6ac87e6c
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000927.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.dbobj.doc/doc/c0058476.html

db2utils Documentation, Release 0.2

the RESOLUTION parameter to CREATE_HISTORY_TABLE procedure. The values which can be specified are as
follows:

Value Meaning
’MICROSECOND’With this value, the triggers perform no explicit quantization. Instead, history records are

constrained simply by the resolution of the TIMESTAMP datatype, currently microseconds.
’SECOND’ Quantizes history into individual seconds. If multiple changes occur to the master record within a

single second, only the final state is kept in the history table.
’MINUTE’ Quantizes history into individual minutes.
HOUR’ Quantizes history into individual hours.
’DAY’ Quantizes history into individual days. If multiple changes occur to the master record within a

single day, as defined by the CURRENT DATE special register, only the final state is kept in the
history table.

’WEEK’ Quantizes history into blocks starting on a Sunday and ending on a Saturday.
’WEEK_ISO’Quantizes history into blocks starting on a Monday and ending on a Sunday.
’MONTH’ Quantizes history into blocks starting on the 1st of a month and ending on the last day of the

corresponding month.
’YEAR’ Quantizes history into blocks starting on the 1st of a year and ending on the last day of the

corresponding year.

The OFFSET parameter specifies an SQL phrase that will be used to offset the effective dates of new history records.
For example, if the source table is only updated a week in arrears, then OFFSET could be set to ’- 7 DAYS’ to
cause the effective dates to be accurate. If offset is not specified a blank string ’’ (meaning no offset) is used.

Note: This procedure is mostly redundant as of DB2 v10.1 which includes the ability to create temporal tables
automatically via the PERIOD element combined with SYSTEM TIME and BUSINESS TIME specifications. How-
ever, the DB2 v10.1 implementation does not include the ability to create temporal tables with particularly coarse
resolutions like WEEKLY.

Parameters

SOURCE_SCHEMA If provided, the schema of the table on which to define the triggers. If omitted, defaults to the
value of the CURRENT SCHEMA special register.

SOURCE_TABLE The name of the table on which to define the triggers.

DEST_SCHEMA If provided, the schema of the table which the triggers should write rows to. If omitted, defaults
to the value of the CURRENT SCHEMA special register.

DEST_TABLE If provided, the name of the table which the triggers should write rows into. If omitted, defaults to
the value of the SOURCE_TABLE parameter with ’_HISTORY’ appended.

RESOLUTION The time period to which the triggers should quantize the history records. Should be the same as the
resolution specified when creating the history table with CREATE_HISTORY_TABLE procedure.

OFFSET A string specifying an offset (in the form of a labelled duration) which will be applied to the effective dates
written by the triggers. If omitted, defaults to the empty string ’’ (meaning no offset is to be applied).

Examples

Create a CORP.CUSTOMERS table, then create a history table called CORP.CUSTOMERS_HISTORY based upon
on the CORP.CUSTOMERS table in the CORPSPACE tablespace with DATE resolution. Finally, install the triggers
which will keep the history table up to date with the base table:

106 Chapter 1. Table of Contents

db2utils Documentation, Release 0.2

CREATE TABLE CORP.CUSTOMERS (
ID INTEGER NOT NULL GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
NAME VARCHAR(100) NOT NULL,
ADDRESS VARCHAR(2000) NOT NULL,
SECTOR CHAR(2) NOT NULL REFERENCES SECTORS(SECTOR)

) IN CORPSPACE COMPRESS YES;
CALL CREATE_HISTORY_TABLE(’CORP’, ’CUSTOMERS’, ’CORP’, ’CUSTOMERS_HISTORY’, ’CORPSPACE’, ’DAY’);
CALL CREATE_HISTORY_TRIGGERS(’CORP’, ’CUSTOMERS’, ’CORP’, ’CUSTOMERS_HISTORY’, ’DAY’, ’’);

Create a history table for an existing PROJECTS table. Populate it with the existing data (and appropriate effective
and expiry dates), then create the history triggers to link the PROJECTS table to the PROJECTS_HISTORY table, with
a weekly resolution and a 1 week history offset:

CALL CREATE_HISTORY_TABLE(’PROJECTS’, ’WEEK’);
INSERT INTO PROJECTS_HISTORY SELECT WEEKSTART(CURRENT DATE), DATE(’9999-12-31’), T.* FROM PROJECTS T;
CALL CREATE_HISTORY_TRIGGERS(’PROJECTS_HISTORY’, ’WEEK’, ’- 7 DAYS’);

See Also

• Source code

• CREATE_HISTORY_TABLE procedure

• CREATE_HISTORY_CHANGES procedure

• CREATE_HISTORY_SNAPSHOTS procedure

• History design usenet post

• CREATE TABLE (built-in command)

• CREATE TRIGGER (built-in command)

• Time Travel Queries in DB2 v10.1

DISABLE_TRIGGER procedure

Disables the specified trigger by saving its definition to a table and dropping it.

Prototypes

DISABLE_TRIGGER(ASCHEMA VARCHAR(128), ATRIGGER VARCHAR(128))
DISABLE_TRIGGER(ATRIGGER VARCHAR(128))

Description

Drops a trigger after storing its definition in DISABLED_TRIGGERS for later “revival” with ENABLE_TRIGGER
procedure. The trigger must be operative (if it is not, recreate it with RECREATE_TRIGGER procedure before calling
DISABLE_TRIGGER.

Parameters

ASCHEMA If provided, the schema containing the trigger to disable. If omitted, defaults to the value of the CUR-
RENT SCHEMA special register.

1.7. Reference 107

https://github.com/waveform80/db2utils/blob/master/history.sql#L1284
http://groups.google.com/group/comp.databases.ibm-db2/msg/e84aeb1f6ac87e6c
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000927.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0000931.html
http://pic.dhe.ibm.com/infocenter/db2luw/v10r1/topic/com.ibm.db2.luw.admin.dbobj.doc/doc/c0058476.html

db2utils Documentation, Release 0.2

ATRIGGER The name of the trigger to disable.

Examples

Disable the FINANCE.LEDGER_INSERT trigger:

CALL DISABLE_TRIGGER(’FINANCE’, ’LEDGER_INSERT’);

Recreate then disable the EMPLOYEE_UPDATE trigger in the current schema:

CALL RECREATE_TRIGGER(’EMPLOYEE_UPDATE’);
CALL DISABLE_TRIGGER(’EMPLOYEE_UPDATE’);

See Also

• Source code

• ENABLE_TRIGGER procedure

• RECREATE_TRIGGER procedure

• DISABLE_TRIGGERS procedure

• SYSCAT.TRIGGERS (built-in catalogue table)

DISABLE_TRIGGERS procedure

Disables all triggers associated with the specified table by saving their definitions to a table and dropping them.

Prototypes

DISABLE_TRIGGERS(ASCHEMA VARCHAR(128), ATABLE VARCHAR(128))
DISABLE_TRIGGERS(ATABLE VARCHAR(128))

Description

Disables all the operative triggers associated with a particular table. If a trigger exists, but is marked inoperative, it is
not touched by this procedure. You can recreate such triggers with RECREATE_TRIGGER procedure before calling
DISABLE_TRIGGERS.

Parameters

ASCHEMA If provided, the schema containing the table for which to disable triggers. If omitted, defaults to the
value of the CURRENT SCHEMA special register.

ATABLE The name of the table to disable all active triggers for.

108 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/toggle_triggers.sql#L101
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001066.html

db2utils Documentation, Release 0.2

Examples

Disable all triggers on the FINANCE.LEDGER table:

CALL DISABLE_TRIGGERS(’FINANCE’, ’LEDGER’);

Disable the triggers for the EMPLOYEE table in the current schema:

CALL DISABLE_TRIGGERS(’EMPLOYEE’);

See Also

• Source code

• ENABLE_TRIGGERS procedure

• RECREATE_TRIGGER procedure

• DISABLE_TRIGGER procedure

• SYSCAT.TRIGGERS (built-in catalogue table)

DROP_SCHEMA procedure

Drops ASCHEMA and all objects within it.

Prototypes

DROP_SCHEMA(ASCHEMA VARCHAR(128))

Description

DROP_SCHEMA is a utility procedure which drops all objects (tables, views, triggers, sequences, aliases, etc.) in a
schema and then drops the schema. It was originally intended to make destruction of user-owned schemas easier (in
the event that a user no longer required access) but can also be used to make writing upgrade scripts easier.

Note: This procedure is effectively redundant since DB2 9.5 which includes the built-in procedure AD-
MIN_DROP_SCHEMA, albeit with a somewhat more complicated calling convention.

Parameters

ASCHEMA The name of the schema to drop.

Examples

Drop the FRED schema and all objects within it:

CALL DROP_SCHEMA(’FRED’);

Drop all schemas which start with the characters TEST:

1.7. Reference 109

https://github.com/waveform80/db2utils/blob/master/toggle_triggers.sql#L169
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001066.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.rtn.doc/doc/r0022036.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.rtn.doc/doc/r0022036.html

db2utils Documentation, Release 0.2

BEGIN ATOMIC
FOR T AS
SELECT SCHEMANAME
FROM SYSCAT.SCHEMATA
WHERE SCHEMANAME LIKE ’TEST%’

DO
CALL DROP_SCHEMA(T.SCHEMANAME);

END FOR;
END!

See Also

• Source code

• ADMIN_DROP_SCHEMA (built-in procedure)

ENABLE_TRIGGER procedure

Enables the specified trigger by restoring its definition from a table.

Prototypes

ENABLE_TRIGGER(ASCHEMA VARCHAR(128), ATRIGGER VARCHAR(128))
ENABLE_TRIGGER(ATRIGGER VARCHAR(128))

Description

Restores a previously disabled trigger by reading its definition from DISABLED_TRIGGERS and recreating it. The
trigger must have been disabled with DISABLE_TRIGGER procedure or DISABLE_TRIGGERS procedure.

Parameters

ASCHEMA If provided, the schema containing the trigger to enable. If omitted, defaults to the value of the CUR-
RENT SCHEMA special register.

ATRIGGER The name of the trigger to enable.

Examples

Enable the FINANCE.LEDGER_INSERT trigger:

CALL ENABLE_TRIGGER(’FINANCE’, ’LEDGER_INSERT’);

Enable the EMPLOYEE_UPDATE trigger in the current schema:

CALL ENABLE_TRIGGER(’EMPLOYEE_UPDATE’);

110 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/drop_schema.sql#L39
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.rtn.doc/doc/r0022036.html

db2utils Documentation, Release 0.2

See Also

• Source code

• DISABLE_TRIGGER procedure

• ENABLE_TRIGGERS procedure

• SYSCAT.TRIGGERS (built-in catalogue table)

ENABLE_TRIGGERS procedure

Enables all triggers associated with a specified table.

Prototypes

ENABLE_TRIGGERS(ASCHEMA VARCHAR(128), ATABLE VARCHAR(128))
ENABLE_TRIGGERS(ATABLE VARCHAR(128))

Description

Enables all the disabled triggers associated with a particular table. Note that this does not affect inactive triggers
which are still attached to the table, just those triggers that have been disabled with DISABLE_TRIGGER procedure or
DISABLE_TRIGGERS procedure. To reactivate inactive triggers, see RECREATE_TRIGGER procedure and RECRE-
ATE_TRIGGERS procedure.

Parameters

ASCHEMA If provided, the schema containing the table for which to enable triggers. If omitted, defaults to the value
of the CURRENT SCHEMA special register.

ATABLE The name of the table to enable all disabled triggers for.

Examples

Enable all disabled triggers on the FINANCE.LEDGER table:

CALL ENABLE_TRIGGERS(’FINANCE’, ’LEDGER’);

Enable the disabled triggers for the EMPLOYEE table in the current schema:

CALL ENABLE_TRIGGERS(’EMPLOYEE’);

See Also

• Source code

• DISABLE_TRIGGERS procedure

• RECREATE_TRIGGER procedure

• ENABLE_TRIGGER procedure

1.7. Reference 111

https://github.com/waveform80/db2utils/blob/master/toggle_triggers.sql#L239
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001066.html
https://github.com/waveform80/db2utils/blob/master/toggle_triggers.sql#L308

db2utils Documentation, Release 0.2

• SYSCAT.TRIGGERS (built-in catalogue table)

MOVE_AUTH procedure

Moves all authorities held by the source to the target, provided they are not already held.

Prototypes

MOVE_AUTH(SOURCE VARCHAR(128), SOURCE_TYPE VARCHAR(1), DEST VARCHAR(128), DEST_TYPE VARCHAR(1), INCLUDE_PERSONAL VARCHAR(1))
MOVE_AUTH(SOURCE VARCHAR(128), DEST VARCHAR(128), INCLUDE_PERSONAL VARCHAR(1))
MOVE_AUTH(SOURCE VARCHAR(128), DEST VARCHAR(128))

Description

MOVE_AUTH is a procedure which moves all authorizations from the source grantee (SOURCE) to the destination
grantee (DEST). Like COPY_AUTH procedure, this procedure does not preserve the grantor, and method authoriza-
tions are not moved. Essentially this procedure combines COPY_AUTH procedure and REMOVE_AUTH procedure
to copy authorizations from SOURCE to DEST and then remove them from SOURCE.

Note: Column-level authorizations will be copied to DEST, but will not be removed from SOURCE. Their removal
must be handled manually.

Parameters

SOURCE The name of the user, group, or role to copy permissions from.

SOURCE_TYPE One of ’U’, ’G’, or ’R’ indicating whether SOURCE refers to a user, group, or role respectively.
If this parameter is omitted AUTH_TYPE scalar function will be used to determine the type of SOURCE.

DEST The name of the user, group, or role to copy permissions to.

DEST_TYPE One of ’U’, ’G’, or ’R’ indicating whether DEST refers to a user, group, or role respectively. If this
parameter is omitted AUTH_TYPE scalar function will be used to determine the type of DEST.

INCLUDE_PERSONAL If this parameter is ’Y’ and SOURCE refers to a user, then permissions associated with
the user’s personal schema will be included in the transfer. Defaults to ’N’ if omitted.

Examples

Copy authorizations from the user TOM to the user DICK, excluding any permissions associated with the TOM schema
(so TOM retains access to his personal schema after this command).

CALL MOVE_AUTH(’TOM’, ’DICK’, ’N’);

Move permissions granted to a group called FINANCE to a role called FINANCE (the INCLUDE_PERSONAL
parameter is set to ’N’ here, but is effectively redundant as SOURCE_TYPE is not ’U’).

CALL MOVE_AUTH(’FINANCE’, ’G’, ’FINANCE’, ’R’, ’N’);

112 Chapter 1. Table of Contents

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001066.html

db2utils Documentation, Release 0.2

See Also

• Source code

• AUTH_TYPE scalar function

• AUTH_DIFF table function

• AUTHS_HELD table function

• COPY_AUTH procedure

• REMOVE_AUTH procedure

RECREATE_TRIGGER procedure

Recreates the specified inoperative trigger from its definition in the system catalogue.

Prototypes

RECREATE_TRIGGER(ASCHEMA VARCHAR(128), ATRIGGER VARCHAR(128))
RECREATE_TRIGGER(ATRIGGER VARCHAR(128))

Description

RECREATE_TRIGGER is a utility procedure which recreates the specified trigger using the SQL found in the system
catalogue tables. It is useful for quickly recreating triggers which have been marked inoperative after a change to one
or more of the trigger’s dependencies. If ASCHEMA is omitted it defaults to the current schema.

Warning: The procedure does not drop the trigger before recreating it. This guards against attempting to recreate
an operative trigger (an inoperative trigger can be recreated without dropping it first). That said, it will not return
an error in the case of attempting to recreate an operative trigger; the procedure will simply do nothing.

Parameters

ASCHEMA If provided, the schema containing the trigger to recreate. If omitted, this parameter defaults to the value
of the CURRENT SCHEMA special register.

ATRIGGER The name of the trigger to recreate.

Examples

Recreate the FINANCE.LEDGER_INSERT trigger:

CALL RECREATE_TRIGGER(’FINANCE’, ’LEDGER_INSERT’);

Recreate the EMPLOYEE_UPDATE trigger in the current schema:

CALL RECREATE_TRIGGER(’EMPLOYEE_UPDATE’);

1.7. Reference 113

https://github.com/waveform80/db2utils/blob/master/auth.sql#L1079

db2utils Documentation, Release 0.2

See Also

• Source code

• RECREATE_TRIGGERS procedure

• SYSCAT.TRIGGERS (buit-in catalogue view)

RECREATE_TRIGGERS procedure

Recreates all the inoperative triggers associated with the specified table from their definitions in the system catalogue.

Prototypes

RECREATE_TRIGGERS(ASCHEMA VARCHAR(128), ATABLE VARCHAR(128))
RECREATE_TRIGGERS(ATABLE VARCHAR(128))

Description

RECREATE_TRIGGER is a utility procedure which recreates all the inoperative triggers defined against the table
specified by ASCHEMA and ATABLE, using the SQL found in the system catalogue tables. It is useful for quickly
recreating triggers which have been marked inoperative after a change to one or more dependencies. If ASCHEMA
is omitted it defaults to the current schema.

Parameters

ASCHEMA If provided, the schema containing the table to recreate inoperative triggers for. If omitted, this parameter
defaults to the value of the CURRENT SCHEMA special register.

ATRIGGER The name of the table to recreate inoperative triggers for.

Examples

Recreate all inoperative triggers defined against the FINANCE.LEDGER table:

CALL RECREATE_TRIGGERS(’FINANCE’, ’LEDGER’);

Recreate all inoperative triggers defined against the EMPLOYEE table in the current schema:

CALL RECREATE_TRIGGERS(’EMPLOYEE’);

See Also

• Source code

• RECREATE_TRIGGER procedure

• SYSCAT.TRIGGERS (built-in catalogue view)

114 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/evolve.sql#L183
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001066.html
https://github.com/waveform80/db2utils/blob/master/evolve.sql#L252
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001066.html

db2utils Documentation, Release 0.2

RECREATE_VIEW procedure

Recreates the specified inoperative view from its definition in the system catalogue.

Prototypes

RECREATE_VIEW(ASCHEMA VARCHAR(128), AVIEW VARCHAR(128))
RECREATE_VIEW(AVIEW VARCHAR(128))

Description

RECREATE_VIEW is a utility procedure which recreates the specified view using the SQL found in the system catalog
tables. It is useful for quickly recreating views which have been marked inoperative after a change to one or more of
the view’s dependencies. If ASCHEMA is omitted it defaults to the current schema.

Note: This procedure is effectively redundant as of DB2 9.7 due to the new deferred revalidation functionality
introduced in that version.

Warning: This procedure does not drop the view before recreating it. This guards against attempting to recreate
an operative view (an inoperative view can be recreated without dropping it first). That said, it will not return an
error in the case of attempting to recreate an operative view; the procedure will simply do nothing.

Warning: See SAVE_AUTH procedure for warnings regarding the loss of authorization information with inoper-
ative views.

Parameters

ASCHEMA If provided, specifies the schema containing the view to recreate. If omitted, defaults to the value of the
CURRENT SCHEMA special register.

AVIEW The name of the view to recreate.

Examples

Recreate the inoperative FOO.BAR view:

CALL RECREATE_VIEW(’FOO’, ’BAR’);

Recreate the BAZ view in the current schema:

CALL RECREATE_VIEW(’BAZ’);

See Also

• Source code

• RECREATE_VIEWS procedure

• SAVE_AUTH procedure

1.7. Reference 115

https://github.com/waveform80/db2utils/blob/master/evolve.sql#L46

db2utils Documentation, Release 0.2

• SAVE_VIEW procedure

• RESTORE_VIEW procedure

• SYSCAT.VIEWS (built-in catalog view)

RECREATE_VIEWS procedure

Recreates all inoperative views in the specified schema from their system catalogue definitions.

Prototypes

RECREATE_VIEWS(ASCHEMA VARCHAR(128))
RECREATE_VIEWS()

Description

RECREATE_VIEWS is a utility procedure which recreates all inoperative views in a specified schema, using the SQL
found in the system catalogue tables. It is useful for quickly recreating views which have been marked inoperative
after a change to one or more of the views’ dependencies. If ASCHEMA is omitted it defaults to the current schema.

Note: This procedure is effectively redundant as of DB2 9.7 due to the new deferred revalidation functionality
introduced in that version.

Warning: This procedure does not take into account the dependencies of views when recreating them. It crudely
attempts to correctly order recreations on the basis of the CREATE_TIME field in the system catalogue, but this
is not necessarily accurate. However, multiple consecutive runs of the procedure can be sufficient to recreate all
inoperative views.

Warning: See SAVE_AUTH procedure for warnings regarding the loss of authorization information with inoper-
ative views.

Parameters

ASCHEMA If provided, specifies the schema containing the views to recreate. If omitted, defaults to the value of the
CURRENT SCHEMA special register.

Examples

Recreate all inoperative views in the FOO schema:

CALL RECREATE_VIEWS(’FOO’);

Recreate all inoperative views in the current schema:

CALL RECREATE_VIEWS;

116 Chapter 1. Table of Contents

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001068.html

db2utils Documentation, Release 0.2

See Also

• Source code

• RECREATE_VIEW procedure

• SAVE_AUTH procedure

• SAVE_VIEW procedure

• RESTORE_VIEW procedure

• SYSCAT.VIEWS (built-in catalog view)

REMOVE_AUTH procedure

Removes all authorities held by the specified name.

Prototypes

REMOVE_AUTH(AUTH_NAME VARCHAR(128), AUTH_TYPE VARCHAR(1), INCLUDE_PERSONAL VARCHAR(1))
REMOVE_AUTH(AUTH_NAME VARCHAR(128), INCLUDE_PERSONAL VARCHAR(1))
REMOVE_AUTH(AUTH_NAME VARCHAR(128))

Description

REMOVE_AUTH is a procedure which removes all authorizations from the entity specified by AUTH_NAME, and
optionally AUTH_TYPE. If AUTH_TYPE is omitted AUTH_TYPE scalar function will be used to determine it.
Otherwise, it must be ’U’, ’G’, or ’R’, standing for user, group or role respectively.

Warning: This routine will not handle revoking column level authorizations, i.e. REFERENCES and UPDATES,
which cannot be revoked directly but rather have to be revoked overall at the table level. Any such authorziations
must be handled manually.

Parameters

AUTH_NAME The name of the user, group, or role to remove all authorizations from.

AUTH_TYPE The letter ’U’, ’G’, or ’R’ indicating whether AUTH_NAME refers to a user, group, or role re-
spectively. If omitted, AUTH_TYPE scalar function will be used to determine the type of AUTH_NAME.

INCLUDE_PERSONAL If this parameter is ’Y’ and AUTH_NAME refers to a user, then all authorizations asso-
ciated with the user’s personal schema will be included. Defaults to ’N’ if omitted, meaning the user will still
have access to all objects within their personal schema by default.

Examples

Remove all authorizations from the user FRED, but leave personal schema authorizations intact.

CALL REMOVE_AUTH(’FRED’);

1.7. Reference 117

https://github.com/waveform80/db2utils/blob/master/evolve.sql#L118
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001068.html

db2utils Documentation, Release 0.2

Remove all authorizations from the FINANCE group (the INCLUDE_PERSONAL parameter is redundant here as
AUTH_NAME is not a user).

CALL REMOVE_AUTH(’FINANCE’, ’G’, ’N’);

See Also

• Source code

• AUTH_TYPE scalar function

• AUTHS_HELD table function

• AUTH_DIFF table function

• COPY_AUTH procedure

• MOVE_AUTH procedure

RESTORE_AUTH procedure

Restores authorizations previously saved by SAVE_AUTH procedure for the specified table.

Prototypes

RESTORE_AUTH(ASCHEMA VARCHAR(128), ATABLE VARCHAR(128))
RESTORE_AUTH(ATABLE VARCHAR(128))

Description

RESTORE_AUTH is a utility procedure which restores the authorization privileges for a table or view, previously
saved by the SAVE_AUTH procedure procedure.

Warning: Privileges may not be precisely restored. Specifically, the grantor in the restored privileges may be
different to the original grantor if you are not the user that originally granted the privileges, or the original privileges
were granted by the system. Furthermore, column specific authorizations (stored in SYSCAT.COLAUTH) are not
saved and restored by these procedures.

Parameters

ASCHEMA The name of the schema containing the table for which authorizations are to be saved. If this parameter
is omitted, it defaults to the value of the CURRENT SCHEMA special register.

ATABLE The name of the table within ASCHEMA for which authorizations are to be saved.

Examples

Save the authorizations associated with the FINANCE.LEDGER table, drop the table, recreate it with a definition
derived from another table, then restore the authorizations:

118 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/auth.sql#L924
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001035.html

db2utils Documentation, Release 0.2

SET SCHEMA FINANCE;
CALL SAVE_AUTH(’LEDGER’);
DROP TABLE LEDGER;
CREATE TABLE LEDGER LIKE LEDGER_TEMPLATE;
CALL RESTORE_AUTH(’LEDGER’);

Advanced usage: Copy the authorizations associated with FINANCE.SALES to FINANCE.SALES_HISTORY by
changing the content of the SAVED_AUTH table (which is structured identically to the SYSCAT.TABAUTH table)
between calls to SAVE_AUTH procedure and RESTORE_AUTH procedure:

SET SCHEMA FINANCE;
CALL SAVE_AUTH(’SALES’);
UPDATE UTILS.SAVED_AUTH

SET TABNAME = ’SALES_HISTORY’
WHERE TABNAME = ’SALES’
AND TABSCHEMA = CURRENT SCHEMA;

CALL RESTORE_AUTH(’SALES_HISTORY’);

See Also

• Source code

• SAVE_AUTH procedure

• SAVE_AUTHS procedure

• RESTORE_AUTHS procedure

• SYSCAT.TABAUTH (built-in catalogue view)

RESTORE_AUTHS procedure

Restores the authorizations of all relations in the specified schema that were previously saved with SAVE_AUTHS
procedure

Prototypes

RESTORE_AUTHS(ASCHEMA VARCHAR(128))
RESTORE_AUTHS()

Description

RESTORE_AUTHS is a utility procedure which restores the authorization settings (previously saved with
SAVE_AUTHS procedure) for all tables in the specified schema. If no schema is specified, the current schema is
used.

Warning: The procedure only attempts to restore settings for those tables or views which currently exist, and
for which settings were previously saved. If you use SAVE_AUTHS procedure on a schema, drop several objects
from the schema and then call RESTORE_AUTHS procedure on that schema, the procedure will succeed with no
error, although several authorization settings have not been restored. Furthermore, any settings associated with the
specified schema that are not restored are removed from store used by SAVE_AUTHS procedure (SAVED_AUTH
in the schema containing the procedures).

1.7. Reference 119

https://github.com/waveform80/db2utils/blob/master/auth.sql#L1116
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001061.html

db2utils Documentation, Release 0.2

Parameters

ASCHEMA The name of the schema containing the tables for which to restore authorziation settings. If this param-
eter is omitted the value of the CURRENT SCHEMA special register will be used instead.

Examples

Save all the authorization information from the tables in the FINANCE_DEV schema, do something arbitrary to the
schema and restore the authorizations again:

SET SCHEMA FINANCE_DEV;
CALL SAVE_AUTHS();
-- Do something arbitrary to the schema (e.g. run a script to manipulate its structure)
CALL RESTORE_AUTHS();

Advanced usage: Copy the authorizations from the FINANCE_DEV schema to the FINANCE schema by changing the
content of SAVED_AUTH (this is the table in which SAVE_AUTH procedure temporarily stores authorizations; it has
exactly the same structure as SYSCAT.TABAUTH):

CALL SAVE_AUTHS(’FINANCE_DEV’);
UPDATE UTILS.SAVED_AUTH

SET TABSCHEMA = ’FINANCE’
WHERE TABSCHEMA = ’FINANCE_DEV’;

CALL RESTORE_AUTHS(’FINANCE’);

See Also

• Source code

• SAVE_AUTH procedure

• SAVE_AUTHS procedure

• RESTORE_AUTH procedure

• SYSCAT.TABAUTH (built-in catalogue view)

RESTORE_VIEW procedure

Restores the specified view which was previously saved with SAVE_VIEW procedure.

Prototypes

RESTORE_VIEW(ASCHEMA VARCHAR(128), AVIEW VARCHAR(128))
RESTORE_VIEW(AVIEW VARCHAR(128))

Description

RESTORE_VIEW is a utility procedure which restores the specified view using the SQL found in SAVED_VIEWS,
which is populated initially by a call to SAVE_VIEW procedure or SAVE_VIEWS procedure. It also implicitly calls
RESTORE_AUTH procedure to ensure that authorizations are not lost. This is the primary difference between us-
ing SAVE_VIEW procedure and RESTORE_VIEW, and using DB2’s inoperative view mechanism with the RECRE-
ATE_VIEW procedure procedure.

120 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/auth.sql#L1499
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001061.html

db2utils Documentation, Release 0.2

Another use of these procedures is in recreating views which need to be dropped surrounding the update of a UDF.

Note: This procedure is effectively redundant as of DB2 9.7 due to the new deferred revalidation functionality
introduced in that version.

Parameters

ASCHEMA If provided, the schema containing the view to restore. If omitted, this parameter defaults to the value of
the CURRENT SCHEMA special register.

AVIEW The name of the view to restore.

Examples

Restore the definition of the FINANCE.LEDGER_CHANGES view:

CALL RESTORE_VIEW(’FINANCE’, ’LEDGER_CHANGES’);

Restore the definition of the EMPLOYEE_CHANGES view in the current schema:

CALL RESTORE_VIEW(’EMPLOYEE_CHANGES’);

See Also

• Source code

• SAVE_VIEW procedure

• RESTORE_VIEWS procedure

• RESTORE_AUTH procedure

• SYSCAT.VIEWS (built-in catalogue view)

RESTORE_VIEWS procedure

Restores all views in the specified schema which were previously saved with SAVE_VIEWS procedure.

Prototypes

RESTORE_VIEWS(ASCHEMA VARCHAR(128))
RESTORE_VIEWS()

Description

RESTORE_VIEWS is a utility procedure which restores the definition of all views in the specified schema from
SAVED_VIEWS which were previously stored with SAVE_VIEW procedure or SAVE_VIEWS procedure. RE-
STORE_VIEWS also implicitly calls RESTORE_AUTH procedure to restore the authorization of the views. This is in
contrast to inoperative views recreated with RECREATE_VIEWS procedure which lose authorization information.

Note: This procedure is effectively redundant as of DB2 9.7 due to the new deferred revalidation functionality

1.7. Reference 121

https://github.com/waveform80/db2utils/blob/master/evolve.sql#L494
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001068.html

db2utils Documentation, Release 0.2

introduced in that version.

Parameters

ASCHEMA If provided, the schema containing the views to save. If omitted, this parameter defaults to the value of
the CURRENT SCHEMA special register.

Examples

Restore the definition of all views in the FINANCE schema:

CALL RESTORE_VIEWS(’FINANCE’);

Restore the definition of all views in the current schema:

CALL RESTORE_VIEWS;

See Also

• Source code

• SAVE_VIEWS procedure

• RESTORE_VIEW procedure

• RESTORE_AUTH procedure

• SYSCAT.VIEWS (built-in catalogue view)

SAVE_AUTH procedure

Saves the authorizations of the specified relation for later restoration with RESTORE_AUTH procedure.

Prototypes

SAVE_AUTH(ASCHEMA VARCHAR(128), ATABLE VARCHAR(128))
SAVE_AUTH(ATABLE VARCHAR(128))

Description

SAVE_AUTH is a utility procedure which copies the authorization settings for the specified table or view from
SYSCAT.TABAUTH to SAVED_AUTH (a utility table which exists in the same schema as the procedure). These
saved settings can then be restored with the RESTORE_AUTH procedure procedure. These procedures are primarily
intended for use in conjunction with the other schema evolution functions (like RECREATE_VIEWS procedure).

Warning: Column specific authorizations (stored in SYSCAT.COLAUTH) are not saved and restored by these
procedures.

Note: SAVE_AUTH procedure and RESTORE_AUTH procedure are not used directly by RECREATE_VIEW

122 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/evolve.sql#L563
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001068.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001061.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001035.html

db2utils Documentation, Release 0.2

procedure because when a view is marked inoperative, all authorization information is immediately wiped from
SYSCAT.TABAUTH. Hence, there is nothing to restore by the time RECREATE_VIEW procedure is run.

You must call SAVE_AUTH procedure before performing the operation that will invalidate the view, and RE-
STORE_AUTH procedure after running RECREATE_VIEW procedure. Alternatively, you may wish to use
SAVE_VIEW procedure and RESTORE_VIEW procedure instead, which rely on SAVE_AUTH procedure and RE-
STORE_AUTH procedure implicitly.

Parameters

ASCHEMA The name of the schema containing the table for which authorizations are to be saved. If this parameter
is omitted, it defaults to the value of the CURRENT SCHEMA special register.

ATABLE The name of the table within ASCHEMA for which authorizations are to be saved.

Examples

Save the authorizations associated with the FINANCE.LEDGER table, drop the table, recreate it with a definition
derived from another table, then restore the authorizations:

SET SCHEMA FINANCE;
CALL SAVE_AUTH(’LEDGER’);
DROP TABLE LEDGER;
CREATE TABLE LEDGER LIKE LEDGER_TEMPLATE;
CALL RESTORE_AUTH(’LEDGER’);

Advanced usage: Copy the authorizations associated with FINANCE.SALES to FINANCE.SALES_HISTORY by
changing the content of the SAVED_AUTH table (which is structured identically to the SYSCAT.TABAUTH table)
between calls to SAVE_AUTH procedure and RESTORE_AUTH procedure:

SET SCHEMA FINANCE;
CALL SAVE_AUTH(’SALES’);
UPDATE UTILS.SAVED_AUTH

SET TABNAME = ’SALES_HISTORY’
WHERE TABNAME = ’SALES’
AND TABSCHEMA = CURRENT SCHEMA;

CALL RESTORE_AUTH(’SALES_HISTORY’);

See Also

• Source code

• SAVE_AUTHS procedure

• SAVE_VIEW procedure

• RESTORE_AUTH procedure

• RESTORE_AUTHS procedure

• RESTORE_VIEW procedure

• SYSCAT.TABAUTH (built-in catalogue view)

1.7. Reference 123

https://github.com/waveform80/db2utils/blob/master/auth.sql#L1185
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001061.html

db2utils Documentation, Release 0.2

SAVE_AUTHS procedure

Saves the authorizations of all relations in the specified schema for later restoration with the RESTORE_AUTHS
procedure procedure.

Prototypes

SAVE_AUTHS(ASCHEMA VARCHAR(128))
SAVE_AUTHS()

Description

SAVE_AUTHS is a utility procedure which copies the authorization settings for all tables in the specified schema. If
no schema is specified the current schema is used. Essentially this is equivalent to running SAVE_AUTH procedure for
every table in a schema.

Parameters

ASCHEMA The name of the schema containing the tables for which to save authorziation settings. If this parameter
is omitted the value of the CURRENT SCHEMA special register will be used instead.

Examples

Save all the authorization information from the tables in the FINANCE_DEV schema, do something arbitrary to the
schema and restore the authorizations again:

SET SCHEMA FINANCE_DEV;
CALL SAVE_AUTHS();
-- Do something arbitrary to the schema (e.g. run a script to manipulate its structure)
CALL RESTORE_AUTHS();

Advanced usage: Copy the authorizations from the FINANCE_DEV schema to the FINANCE schema by changing
the content of SAVED_AUTH (this is the table in which SAVE_AUTH procedure temporarily stores authorizations; it
has exactly the same structure as SYSCAT.TABAUTH):

CALL SAVE_AUTHS(’FINANCE_DEV’);
UPDATE UTILS.SAVED_AUTH

SET TABSCHEMA = ’FINANCE’
WHERE TABSCHEMA = ’FINANCE_DEV’;

CALL RESTORE_AUTHS(’FINANCE’);

See Also

• Source code

• SAVE_AUTH procedure

• RESTORE_AUTH procedure

• RESTORE_AUTHS procedure

• SYSCAT.TABAUTH (built-in catalogue view)

124 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/auth.sql#L1276
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001061.html

db2utils Documentation, Release 0.2

SAVE_VIEW procedure

Saves the authorizations and definition of the specified view for later restoration with RESTORE_VIEW procedure.

Prototypes

SAVE_VIEW(ASCHEMA VARCHAR(128), AVIEW VARCHAR(128))
SAVE_VIEW(AVIEW VARCHAR(128))

Description

SAVE_VIEW is a utility procedure which saves the definition of the specified view to SAVED_VIEWS. This saved
definition can then be restored with the RESTORE_VIEW procedure procedure. SAVE_VIEW and RESTORE_VIEW
also implicitly call SAVE_AUTH procedure and RESTORE_AUTH procedure to preserve the authorizations of the
view. This is in contrast to inoperative views recreated with RECREATE_VIEW procedure which lose authorization
information.

Note: This procedure is effectively redundant as of DB2 9.7 due to the new deferred revalidation functionality
introduced in that version.

Parameters

ASCHEMA If provided, the schema containing the view to save. If omitted, this parameter defaults to the value of
the CURRENT SCHEMA special register.

AVIEW The name of the view to save.

Examples

Save the definition of the FINANCE.LEDGER_CHANGES view:

CALL SAVE_VIEW(’FINANCE’, ’LEDGER_CHANGES’);

Save the definition of the EMPLOYEE_CHANGES view in the current schema:

CALL SAVE_VIEW(’EMPLOYEE_CHANGES’);

See Also

• Source code

• RESTORE_VIEW procedure

• SAVE_VIEWS procedure

• SAVE_AUTH procedure

• SYSCAT.VIEWS (built-in catalogue view)

1.7. Reference 125

https://github.com/waveform80/db2utils/blob/master/evolve.sql#L339
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001068.html

db2utils Documentation, Release 0.2

SAVE_VIEWS procedure

Saves the authorizations and definitions of all views in the specified schema for later restoration with RE-
STORE_VIEWS procedure.

Prototypes

SAVE_VIEWS(ASCHEMA VARCHAR(128))
SAVE_VIEWS()

Description

SAVE_VIEWS is a utility procedure which saves the definition of all views in the specified schema to SAVED_VIEWS.
These saved definitions can then be restored with the RESTORE_VIEWS procedure procedure. SAVE_VIEWS also
implicitly calls SAVE_AUTH procedure to preserve the authorizations of the views. This is in contrast to inoperative
views recreated with RECREATE_VIEW procedure which lose authorization information.

Note: This procedure is effectively redundant as of DB2 9.7 due to the new deferred revalidation functionality
introduced in that version.

Parameters

ASCHEMA If provided, the schema containing the views to save. If omitted, this parameter defaults to the value of
the CURRENT SCHEMA special register.

Examples

Save the definition of all views in the FINANCE schema:

CALL SAVE_VIEWS(’FINANCE’);

Save the definition of all views in the current schema:

CALL SAVE_VIEWS;

See Also

• Source code

• RESTORE_VIEWS procedure

• SAVE_VIEW procedure

• SAVE_AUTH procedure

• SYSCAT.VIEWS (built-in catalogue view)

126 Chapter 1. Table of Contents

https://github.com/waveform80/db2utils/blob/master/evolve.sql#L414
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.sql.ref.doc/doc/r0001068.html

db2utils Documentation, Release 0.2

1.8 Change Log

1.8.1 Release 0.2 (XXX)

The second release mostly consisted of bug fixes and tidying up the documentation, but a couple of new features were
introduced:

• The suite as a whole defines a couple of roles for management of the routines defined in the suite, and each
module defines per-module subordinate roles allowing fine-grain control of who has access to which procedures

• The new assert.sql module includes a variety of routines for writing tests for the suite (and indeed databases in
general)

• The new merge.sql module includes routines for automatically constructing “upsert” style MERGE statements
(along with corresponding deletion and insertion statements) (#2)

1.8.2 Release 0.1 (2013-08-16)

First packaged release (despite the source repository being public for years :)

1.9 License

db2utils is distributed under the terms of the MIT license (an OSI approved license):

1.9.1 MIT License

Copyright (c) 2005-2014 Dave Hughes <dave@waveform.org.uk>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.9.2 Other Licenses

The MIT license is pretty permissive (typically it’s viewed as a “commercial friendly” license), but if anyone wants
db2utils released under an additional open-source license (dual licensed), please feel free to contact me.

1.8. Change Log 127

https://github.com/waveform80/db2utils/issues/2
http://www.opensource.org/licenses/mit-license.php
mailto:dave@waveform.org.uk

db2utils Documentation, Release 0.2

128 Chapter 1. Table of Contents

CHAPTER 2

Indices and tables

• genindex

• search

129

	Table of Contents
	Introduction
	Requirements
	Downloads
	Installation
	First Steps
	Modules Overview
	Reference
	Change Log
	License

	Indices and tables

